版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二倍角公式的导出与应用的教学设计二倍角公式的导出与应用【教学目标】:一、知识与技能 1. 能从两角和的正弦、余弦、正切公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;理解化归思想在推导中的作用。 2. 能正确运用(顺向、逆向、变形运用)二倍角公式求值、化简、证明,增强学生灵活运用数学知识和逻辑推理能力; 3.揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识,并培养学生综合分析能力. 4.结合三角函数值域求函数值域问题。二、过程与方法 1.让学生自己由和角公式而导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;通
2、过例题讲解,总结方法.通过做练习,巩固所学知识. 2.通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力;通过综合运用公式,掌握有关技巧,提高分析问题、解决问题的能力。 三、情感、态度与价值观 1.通过本节的学习,使同学们对三角函数各个公式之间有一个全新的认识;理解掌握三角函数各个公式的各种变形,增强学生灵活运用数学知识、逻辑推理能力和综合分析能力.提高逆用思维的能力. 2.引导学生发现数学规律,培养学生思维的严密性与科学性等思维品质。 【教学重点与难点】:重点:二倍角的正弦、余弦、正切公式以及公式的变形,二倍角公式的简单应用;难点:二倍角的理解及其灵活运用(公式的逆向运用及变式训练)。
3、【学法与教学用具】: 1. 学法: (1)自主+探究性学习:让学生自己由和角公式导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 2. 教法:本节课采用观察、赋值、启发探究相结合的教学方法,运用现代多媒体教学手段,进行教学活动,通过设置问题引导学生观察分析,使学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得倍角公式;(通过设置问题让学生理解二倍角公式是由和角公式由一般化归为特殊而来的)对于二倍角公式的灵活运用,采用讲、练结合的方式进行处理,让学生从实例中
4、去理解,从而能灵活地运用二倍角公式解题。 3. 教学用具:多媒体、实物投影仪. 教学用具:电脑、投影机.【授课类型】:新授课【课时安排】:1课时【教学思路】:复习两角和与差的正弦、余弦、正切的公式。Sin(A+B)=SinACosB+SinBCosASin(A-B)= SinACosB-SinBCosACos(A+B)= CosACosB-SinASinBCos(A-B)=CosACosB+SinASinBTan(A+B)=TanA+TanB/1-TanATanBTan(A-B)= TanA-TanB/1+TanATanB引导启发同学,根据上述两角和与差的三角函数公式推出二倍角公式。让同学们自
5、己探究出当A=B时既可以得出二倍角公式,从而得到Sin2A=2SinACosACos2A=CosACosA-SinASinATan2A=2TanA/1-TanATanA通过例题运用二倍角公式例1 已知sin2=, ,求sin4,cos4,tan4的值. 讲授过程:引导学生分析题目中角的关系,观察所给条件与结论的结构,注意二倍角公式的选用,领悟“倍角”是相对的这一换元思想.让学生体会“倍”的深刻含义,它是描述两个数量之间关系的.本题中的已知条件给出了2的正弦值.由于4是2的二倍角,因此可以考虑用倍角公式.本例是直接应用二倍角公式解题,目的是为了让学生初步熟悉二倍角的应用,理解二倍角的相对性,可让
6、学生自己独立探究完成.解:由 ,得 2.又sin2=cos2=于是sin4=sin2(2)=2sin2cos2=2()=cos4=cos2(2)=1-2sin22=1-2()2=tan4=(-)=点评:学生由问题中条件与结论的结构不难想象出解法,但要提醒学生注意,在解题时注意优化问题的解答过程,使问题的解答简捷、巧妙、规范,并达到熟练掌握的程度.本节公式的基本应用是高考的热点.变式训练 1.不查表,求值:sin15+cos15解:原式=点评:本题在两角和与差的学习中已经解决过,现用二倍角公式给出另外的解法,让学生体会它们之间的联系,体会数学变化的魅力.例2 在ABC中,cosA=,tanB=2
7、,求tan(2A+2B)的值. 讲授过程:这是本节课本上最后一个例题,结合三角形,具有一定的综合性,同时也是和与差公式的应用问题.可引导学生注意在三角形的背景下研究问题,会带来一些隐含的条件,如A+B+C=,0A,0B,0C,就是其中的一个隐含条件.可先让学生讨论探究,适时点拨.学生探究解法时再进一步启发学生思考由条件到结果的函数及角的联系.由于对2A+2B与A,B之间关系的看法不同会产生不同的解题思路,所以学生会产生不同的解法,不过它们都是对倍角公式、和角公式的联合运用,本质上没有区别.不论学生的解答正确与否,都不去直接干预.在学生自己尝试解决问题后,可与学生一起比较各种不同的解法,并引导学
8、生进行解题方法的归纳总结.解:方法一:在ABC中,由cosA=,0A,得sinA=所以tanA=,tan2A=又tanB=2,所以tan2B=于是tan(2A+2B)= 方法二:在ABC中,由cosA=,0A,得sinA=所以tanA=又tanB=2,所以tan(A+B)= 于是tan(2A+2B)=tan2(A+B)=点评:以上两种方法都是对倍角公式、和角公式的联合运用,本质上没有区别,其目的是为了鼓励学生用不同的思路去思考,以拓展学生的视野.变式训练化简:解:原式【练习】教科书P135 1、5。【课堂小结】1.先由学生回顾本节课都学到了什么?有哪些收获?对前面学过的两角和公式有什么新的认识?对三角函数式子的变化有什么新的认识?怎样用二倍角公式进行简单三角函数式的化简、求值与恒等式证明.2、二倍角公式是和角公式的特例,体现将一般化归为特殊的基本数学思想方法。3、二倍角公式与和角、差角公式一样,反映的都是如何用单角的三角函数值表示复
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工厂门口整修合同范例
- 2025自建房施工合同书 (包工不包料 B款)
- 废料采购协议合同范例
- 活动执行竞标合同范例
- 商场产品销售合同范例
- 物业用工免责合同范例
- 私人买卖地合同范例
- 铜仁幼儿师范高等专科学校《地方立法实训》2023-2024学年第一学期期末试卷
- 完整版100以内加减法混合运算4000道131
- 铜陵学院《计算机网络基础4》2023-2024学年第一学期期末试卷
- 安全带管理登记台帐
- GB 16847-1997保护用电流互感器暂态特性技术要求
- 装饰装修施工质量检查评分表
- 超图软件三维平台技术参数v7c2015r
- 《思想道德与法治》 课件 第四章 明确价值要求 践行价值准则
- 幼儿园讲座:课程游戏化、生活化建设的背景与目的课件
- 湖南省高等教育自学考试 毕业生登记表
- 地理信息系统(GIS)公开课(课堂)课件
- 电气照明设备相关知识课件
- 妇产科护理学理论知识考核题库与答案
- 汉字文化精品课件
评论
0/150
提交评论