版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Chapter 5 Solutions5.1(a)xn = n + 0.6065n1 + 0.3679n2(b)The only non-zero components in the sum are k = 0, k = 1 and k = 2.5.2The systems response to n is hn, while the response to n1 is hn1. Therefore, when the input xn = n + n1 is applied to the system, the output is yn = hn + hn1. The two signals
2、 hn and hn1 can be summed sample by sample.hnnhn1nhn + hn1n5.3(a)hn2hn2n(b)hn+1hn+1n(c)hnhnn(d)h3nh3nn5.4Starting with n = 0, the input xn has the sample values 0, 1 and 2. Starting with n = 0, the impulse response hn has the sample values 1, 2, 3 and 4. These samples are inserted into a convolution
3、 table. Beyond n = 5, all outputs are zero. This is a direct result of the finite lengths of the input and impulse response signals.xk012hk4321y0 = 0h1k4321y1 = 1h2k4321y2 = 4h3k4321y3 = 7h4k4321y4 = 10h5k4321y5 = 8h6k4321y6 = 05.5(a)xk1234567hk1000y0 = 0h1k1000y1 = 0h2k1000y2 = 0h3k1000y3 = 1h4k100
4、0y4 = 2h5k1000y5 = 3h6k1000y6 = 4(b)The impulse response hn = nk delays the signal by k steps.5.6(a)All output samples before n = 0 and after n = 8 are zero.xk1111111hk0.20.41?y0 = 1.0h1k0.20.41?y1 = 0.6h2k0.20.41y2 = 0.4h3k0.20.41y3 = 0.4h4k0.20.41y4 = 0.4h5k0.20.41y5 = 0.4h6k0.20.41y6 = 0.4h7k0.20
5、.41?y7 = 0.6h8k0.20.41?y8 = 0.2(b)The outputs influenced by boundary effects are indicated by question marks.5.7The convolution of the impulse response with the step function produces the step response. The samples in the step response are, of course, cumulative sums of the impulse response samples.
6、n0123456789hn1.0000.8500.7230.6140.5220.4440.3770.3210.2730.232sn1.0001.8502.5733.1873.7094.1524.5304.8505.1235.354n10111213141516171819hn0.1970.1670.1420.1210.1030.0870.0740.0630.0540.046sn5.5515.7185.8615.9816.0846.1726.2466.3096.3636.408After 17 samples, the step response samples change by less t
7、han 1%. This point may be considered the beginning of an approximate steady state.5.8 (a)xk010101010hk1y0 = 0.0h1k0.61y1 = 1.0h2k0.360.61y2 = 0.6h3k0.2160.360.61y3 = 0.64h4k0.1300.2160.360.61y4 = 0.384h5k0.0780.1300.2160.360.61y5 = 0.770h6k0.0470.0780.1300.2160.360.61y6 = 0.462h7k0.0280.0470.0780.13
8、00.2160.360.61y7 = 0.723h8k0.0170.0280.0470.0780.1300.2160.360.61y8 = 0.434The output values for n = 10 to n = 19 are added below, and all twenty output samples are plotted.n91011121314yn0.7400.44380.73370.44020.73590.4415n1516171819yn0.73510.44110.73540.44120.7353ynn(b)The samples values in one cyc
9、le of the output remain within 1% of the samples in the preceding cycle beginning with sample n = 9. Thus, an approximate steady state is reached after 9 samples.5.9(a)The convolution of the impulse response and the input produces the output samples listed.n01234yn5.00007.50008.75009.37509.6875n5678
10、9yn9.84389.92199.96099.98059.9902(b)Beginning with sample n = 6, the output changes by less than 1% from the previous sample. Steady state begins at this point. The approximate steady state output level is close to one.5.10(a)The period of the input is 2= 2/2/5 = 5.(b)The output is obtained through
11、convolution. xk0.000.9510.5880.5880.9510.000.951hk2y0 = 0.0h1k32y1 = 1.902h2k432y2 = 4.029h3k432y3 = 4.392h4k432y4 = 1.314xk0.5880.9510.000.9510.5880.5880.951h5k432y5 = 5.2043h6k432y6 = 1.902h7k432y7 = 4.028h8k432y8 = 4.392h9k432y9 = 1.314(c)ynnsteady state behaviortransient behavior(d)In steady sta
12、te, the output repeats every five samples, just like the input.5.11(a)xk111111hk000y0 = 0h1k1000y1 = 0h2k11000y2 = 0h3k111000y3 = 1h4k1111000y4 = 2h5k11111000y5 = 3h6k01111100y6 = 4h7k00111110y7 = 5h8k00011111y8 = 5h9k00001111y9 = 5ynn(b)The steady state portion of the output begins with sample n =
13、7. The transient portion comprises samples n = 0 to n = 6.5.12(a)To obtain the impulse response of the cascaded system, an impulse function is applied at the input of the first system. The output is h1n, by definition. This output acts as the input to the second system, and is convolved with h2n to
14、find the overall impulse response hn. This is general result: The impulse response of a two filters cascaded together is the convolution of the filters impulse responses.h1k100.100.2h2k0.36790.60651h0 = 1.0h21k0.22310.36790.60651h1 = 0.6065h22k0.22310.36790.60651h2 = 0.2679h23k0.22310.36790.60651h3
15、= 0.1625h24k0.22310.36790.60651h4 = 0.1632h25k0.22310.36790.60651h5 = 0.0990h26k0.22310.36790.6065h6 = 0.0736h27k0.22310.3679h7 = 0.0446h28k0.2231h8 = 0.0(b)The step response may be found by convolving the impulse response hn with the step function, or by computing cumulative sums of the impulse res
16、ponse samples. The step response samples are listed in the table, and both the impulse and step responses of the system are plotted below.n012345678sn1.01.60651.87442.03692.20012.29912.37272.41732.4173snhnnn5.13The step response is the response of the system to an input step, xn = un.xk111111hk0.135
17、0.3681y0 = 1.0h1k0.1350.3681y1 = 1.368h2k0.1350.3681y2 = 1.503h3k0.1350.3681y3 = 1.503h4k0.1350.3681y4 = 1.503h5k0.1350.3681y5 = 1.503The output approaches a constant value because the input has a constant value.5.14To re-express the difference equation, the impulse response must be found first. The
18、 impulse response can be found using the difference equation, that is,hn = 0.8hn1 + nThe first ten samples are:n01234hn10.80.640.5120.410n56789hn0.3280.2620.2100.1680.134The difference equation becomes yn = xn 0.8xn1 + 0.64xn2 0.512xn3 + 0.410 xn4 0.328xn5 + or, more compactly, .5.15The impulse resp
19、onse samples are given in the table:n01234hn1.00000.74080.54880.40660.0000This is a finite impulse response, so the coefficients bk for the difference equation match the impulse response samples:yn = xn + 0.7408xn1 + 0.5488xn2 + 0.4066xn3From this difference equation, the step response may be obtain
20、ed assn = un + 0.7408un1 + 0.5488un2 + 0.4066un3The first eight samples are listed in the table:n01234567sn1.00001.74082.28962.69622.69622.69622.69622.6962Alternatively, the step response may be found using convolution. The table below shows the calculations. Convolution and the difference equation
21、give the same results.xk111111hk0.74081.000y0 = 1.000h1k0.54880.74081.000y1 = 1.7408h2k0.40660.54880.74081.000y2 = 2.2896h3k0.40660.54880.74081.000y3 = 2.6962h4k0.40660.54880.74081.000y4 = 2.6962h5k0.40660.54880.74081.000y5 = 2.6962h6k0.40660.54880.7408y6 = 2.6962h7k0.40660.5488y7 = 2.69625.16The im
22、pulse response for a nine-term moving average filter ishn = Convolution shows that the step response samples are cumulative sums of the impulse response samples.n01234567sn1/92/93/94/95/96/97/98/9n89101112131415sn11111111Eight samples are affected by boundary effects. Steady state begins with sample
23、 n = 8.5.17Since the impulse response for an 11-term moving average filter has 11 terms, the first 11 1 = 10 samples and the last 10 samples are influenced by boundary effects. Therefore, 20 samples are affected, while 2048 20 = 2028 are not.5.18The impulse response for a 5-term moving average filte
24、r is:hn = Sixteen samples of the output are computed in the convolution table, and are plotted below. The filter has the effect of smoothing out the abrupt transitions from the otherwise steady signal.xk0.50.50.510.50.50.51hk0.20.2y0 = 0.1h1k0.20.20.2y1 = 0.2h2k0.20.20.20.2y2 = 0.3h3k0.20.20.20.20.2
25、y3 = 0.5h4k0.20.20.20.20.2y4 = 0.6h5k0.20.20.20.20.2y5 = 0.6h6k0.20.20.20.20.2y6 = 0.6h7k0.20.20.20.20.2y7 = 0.7xk0.50.50.510.50.50.510.50.5h8k0.20.20.20.20.2y8 = 0.6h9k0.20.20.20.20.2y9 = 0.6h10k0.20.20.20.20.2y10 = 0.6h11k0.20.20.20.20.2y11 = 0.7h12k0.20.20.20.20.2y12 = 0.6h13k0.20.20.20.20.2y13 =
26、 0.6 xk0.510.50.50.510.50.50.51h14k0.20.20.20.20.2y14 = 0.6h15k0.20.20.20.20.2y15 = 0.7yn n5.19(a)The difference equation isThe impulse response is(b)The first few samples are calculated as follows:xk0.0000.5000.8661.000.8660.5hk1/31/31/3y0 = 0.0h1k1/31/31/3y1 = 0.167h2k1/31/31/3y2 = 0.455h3k1/31/31
27、/3y3 = 0.789h4k1/31/31/3y4 = 0.911h5k1/31/31/3y5 = 0.789xk0.8660.50.0000.5000.8661.000.8660.5h6k1/31/31/3y6 = 0.455h7k1/31/31/3y7 = 0.0h8k1/31/31/3y8 = 0.455h9k1/31/31/3y9 = 0.789h10k1/31/31/3y10 = 0.911h11k1/31/31/3y11 = 0.789xk0.8660.50.0000.5000.8661.000.8660.5h12k1/31/31/3y6 = 0.455h13k1/31/31/3
28、y7 = 0.0h14k1/31/31/3y8 = 0.455nnxnynInput SignalOutput Signal(c)As the above table shows, only the samples for n = 0 and n = 1 are influenced by boundary effects. These samples also form the transient portion of the output response. The output begins to show its steady state behavior with the sampl
29、e at n = 2.5.20(a)The easiest way to deduce the impulse response is to identify impulse response samples one at a time from the table below.xk321hk?2y0 = 6h1k?02y1 = 4h2k?102y2 = 1h3k0102y3 = 2h4k0102y4 = 1h5k010y5 = 0The impulse response is hn = 2n n2.(b)The output is calculated in the convolution
30、table below.xk20100.5hk102y0 = 4h1k102y1 = 0h2k102y2 = 4h3k102y3 = 0h4k102y4 = 2h5k102y5 = 0h6k10y6 = 0.5h7k1y7 = 0.05.21The 12 x 12 original image has the gray scale values:255255255255255255000000255255255255255255000000255255255255255255000000255255255255255255000000255255255255255255000000255255255255255255000000000000255255255255255255000000255255255255255255000000255255255255255255000000255255255255255255000000255255255255255255000000255255255255255255The convolution kernel for the smoothing filter isTo avoid boundary effects
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业新年活动获奖证书模板方案
- 全国大学生职业规划大赛《电波传播与天线》专业生涯发展展示【获省级奖项】
- 2025年中医院校夏令营面试题库及答案
- 2025年凉州区的事业单位考试及答案
- 2025年高专院校教师笔试真题及答案
- 2025年濮阳市英语招教面试题库及答案
- 2025年河北农信社招笔试题目及答案
- 2025年风电场线路检修面试题库及答案
- 2025年股份制银行的笔试题目及答案
- 2025年广州海颐软件线上笔试及答案
- 2025至2030中国航空发动机关键零部件国产化突破与投资价值评估报告
- 2025年重庆基层法律服务考试真题及答案
- 血液透析患者出血风险的防范
- 高考数学解答题:圆锥曲线的综合应用(10大题型)学生版
- 《建筑装饰设计收费标准》(2024年版)
- 山东省潍坊市普通高中2025届物理高三第一学期期末调研模拟试题含解析
- 北京航空航天大学2014年671无机化学考研真题
- 垫片密封技术课件
- 化疗所致恶心呕吐(CINV)的防治进展及规范PPT课件
- 购销合同中英文版本
- 钢筋工程施工工艺.ppt
评论
0/150
提交评论