版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在-,0,2这四个数中,最小的数是( )ABC0D22某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A参加本次植树活动共有30人B每人植树量的众数是4棵C每人植树量的中位数是5棵D每人植树量的平
2、均数是5棵3如图,直线AB与半径为2的O相切于点C,D是O上一点,且EDC=30,弦EFAB,则EF的长度为( )A2B2CD24如图所示,的顶点是正方形网格的格点,则的值为()ABCD5某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )ABCD6如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=()ABCD7如图,AB是的直径,点C,D在上,若,则的度数为ABCD8估计介于( )A0与1之间B1与2之间C2与3之间D3与4之间9如图,O是坐标原
3、点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的负半轴上,函数y=(x0)的图象经过菱形OABC中心E点,则k的值为()A6B8C10D1210将抛物线yx2x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()Ayx2+3x+6Byx2+3xCyx25x+10Dyx25x+4二、填空题(共7小题,每小题3分,满分21分)11为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元若每个篮球80元,每个足球50元,则篮球最多可购买_个12分解因式:8x-8xy+2y= _ .13矩形ABCD中,AB=6,BC=8.点P在矩形ABC
4、D的内部,点E在边BC上,满足PBEDBC,若APD是等腰三角形,则PE的长为数_.14数据2,0,1,2,5的平均数是_,中位数是_15已知扇形的弧长为,圆心角为45,则扇形半径为_16已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_17如图,在半径为2cm,圆心角为90的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_三、解答题(共7小题,满分69分)18(10分)化简求值:,其中x是不等式组的整数解19(5分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20,用7200元购进的乙种品牌空调数量比
5、用3000元购进的甲种品牌空调数量多2台 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元台,乙种品牌空调的售价为3500元台请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润20(8分)已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,(1)如图,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;(2)如图,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG2DM时,求边AG的长;(3)如图,
6、当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG4DM时,直接写出边AG的长21(10分)如图,在ABC中,B90,AB4,BC1在BC上求作一点P,使PA+PBBC;(尺规作图,不写作法,保留作图痕迹)求BP的长22(10分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:171816132415282618192217161932301614152615322317151528281619对这30个数据按组距3进行分组,
7、并整理、描述和分析如下频数分布表组别一二三四五六七销售额频数79322数据分析表平均数众数中位数20.318请根据以上信息解答下列问题:填空:a=,b=,c=;若将月销售额不低于25万元确定为销售目标,则有位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由23(12分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:类型价格进价(元/盏)售价(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各进多少盏(2)若设商场购进A型台灯m盏,销售完这批台灯所获利润为P,写出P与m之间的函数关系式(3
8、)若商场规定B型灯的进货数量不超过A型灯数量的4倍,那么A型和B型台灯各进多少盏售完之后获得利润最多?此时利润是多少元24(14分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0t8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8t24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)求w关于t的函数解析式;该药厂销售部门分析认为,336w5
9、13是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】在,0,1这四个数中,10,故最小的数为:1故选D【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.2、D【解析】试题解析:A、4+10+8+6+2=30(人),参加本次植树活动共有30人,结论A正确;B、108642,每人植树量的众数是4棵,结论B正确;C、共有30个数,第1
10、5、16个数为5,每人植树量的中位数是5棵,结论C正确;D、(34+410+58+66+72)304.73(棵),每人植树量的平均数约是4.73棵,结论D不正确故选D考点:1.条形统计图;2.加权平均数;3.中位数;4.众数3、B【解析】本题考查的圆与直线的位置关系中的相切连接OC,EC所以EOC=2D=60,所以ECO为等边三角形又因为弦EFAB所以OC垂直EF故OEF=30所以EF=OE=24、B【解析】连接CD,求出CDAB,根据勾股定理求出AC,在RtADC中,根据锐角三角函数定义求出即可【详解】解:连接CD(如图所示),设小正方形的边长为,BD=CD=,DBC=DCB=45,在中,则
11、故选B【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形5、D【解析】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:故选D6、C【解析】由正方形的性质知DG=CG-CD=2、ADGF,据此证ADMFGM得 , 求出GM的长,再利用勾股定理求解可得答案【详解】解:四边形ABCD和四边形CEFG是正方形,AD=CD=BC=1、CE=CG=GF=3,ADM=G=90,DG=CG-CD=2,ADGF,则ADMFGM,即 ,解得:GM= ,FM=
12、 = = ,故选:C【点睛】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点7、B【解析】试题解析:连接AC,如图,AB为直径,ACB=90, 故选B点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.8、C【解析】解:,即估计在23之间故选C【点睛】本题考查估计无理数的大小9、B【解析】根据勾股定理得到OA=5,根据菱形的性质得到AB=OA=5,ABx轴,求得B(-8,-4),得到E(-4,-2),于是得到结论【详解】点A的坐标为(3,4),OA=5,四边形AOCB是菱形,AB=OA=5,ABx轴,B(8,4),点E是菱形AOCB的
13、中心,E(4,2),k=4(2)=8,故选B【点睛】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键10、A【解析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】y=x2-x+1=x-122+34 ,当向左平移2个单位长度,再向上平移3个单位长度,得y=x-12+22+34+3=x+322+154=x2+3x+6.故选A【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;二、填空题(共7小题,每小题3分,满分21分)11、1【解析】设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金
14、不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可【详解】设购买篮球x个,则购买足球个,根据题意得:,解得:为整数,最大值为1故答案为1【点睛】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键12、1【解析】提取公因式1,再对余下的多项式利用完全平方公式继续分解完全平方公式:a11ab+b1=(ab)1【详解】8x1-8xy+1y=1(4x1-4xy+y)=1(1x-y)1故答案为:1(1x-y)1【点睛】此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解13、3或1.2【解析】【分
15、析】由PBEDBC,可得PBE=DBC,继而可确定点P在BD上,然后再根据APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】四边形ABCD是矩形,BAD=C=90,CD=AB=6,BD=10,PBEDBC,PBE=DBC,点P在BD上,如图1,当DP=DA=8时,BP=2,PBEDBC,PE:CD=PB:DB=2:10,PE:6=2:10,PE=1.2; 如图2,当AP=DP时,此时P为BD中点,PBEDBC,PE:CD=PB:DB=1:2,PE:6=1:2,PE=3; 综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的
16、性质,矩形的性质等,确定出点P在线段BD上是解题的关键.14、0.8 0 【解析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数【详解】平均数=(2+01+2+5)5=0.8;把这组数据按从大到小的顺序排列是:5,2,0,-1,-2,故这组数据的中位数是:0.故答案为0.8;0.【点睛】本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.15、1【解析】根据弧长公式l=代入求解即可【详解】解:,
17、故答案为1【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=16、1.1【解析】【分析】先判断出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论【详解】一组数据4,x,1,y,7,9的众数为1,x,y中至少有一个是1,一组数据4,x,1,y,7,9的平均数为6,(4+x+1+y+7+9)=6,x+y=11,x,y中一个是1,另一个是6,这组数为4,1,1,6,7,9,这组数据的中位数是(1+6)=1.1,故答案为:1.1【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.17、1【解析】试题
18、分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等连接AB,OD,根据两半圆的直径相等可知AOD=BOD=45,故可得出绿色部分的面积=SAOD,利用阴影部分Q的面积为:S扇形AOBS半圆S绿色,故可得出结论解:扇形OAB的圆心角为90,扇形半径为2,扇形面积为:=(cm2),半圆面积为:12=(cm2),SQ+SM =SM+SP=(cm2),SQ=SP,连接AB,OD,两半圆的直径相等,AOD=BOD=45,S绿色=SAOD=21=1(cm2),阴影部分Q的面积为:S扇形AOBS半圆S绿色=1=1(cm2)故答案为1考点:扇形面积的计算三、解答题(共7小
19、题,满分69分)18、当x=3时,原式=,当x=2时,原式=1【解析】先化简分式,再解不等式组求得x的取值范围,在此范围内找到符合分式有意义的x的整数值,代入计算可得【详解】原式=,解不等式组,解不等式,得:x4,解不等式,得:x1,不等式组的解集为4x1,不等式的整数解是3,2,1又x+10,x10 x1,x=3或x=2,当x=3时,原式=,当x=2时,原式=1【点睛】本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.19、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台
20、时,售完后利润最大,最大为12100元【解析】(1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价单价可得出关于x的分式方程,解之并检验后即可得出结论;(2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题【详解】(1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,由题意,得 ,解得x=1500,经检
21、验,x=1500是原分式方程的解,乙种品牌空调的进价为(1+20%)1500=1800(元).答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台,由题意,得1500a+1800(10-a)16000,解得 a,设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因为-7000,则w随a的增大而减少,当a=7时,w最大,最大为12100元.答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.【点睛】本题考查了一次函数的应用、分式方程的应用
22、以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价单价列出关于x的分式方程;(2)根据总利润=单台利润购进数量找出y关于a的函数关系式20、(1)结论:BEDG,BEDG理由见解析;(1)AG1;(3)满足条件的AG的长为1或1【解析】(1)结论:BEDG,BEDG只要证明BAEDAG(SAS),即可解决问题;(1)如图中,连接EG,作GHAD交DA的延长线于H由A,D,E,G四点共圆,推出ADOAEG45,解直角三角形即可解决问题;(3)分两种情形分别画出图形即可解决问题;【详解】(1)结论:BE=DG,BEDG理由:如图中,设BE交DG于点K,AE交DG于点O四边形ABCD,四边
23、形AEFG都是正方形,AB=AD,AE=AG,BAD=EAG=90,BAE=DAG,BAEDAG(SAS),BE=DG,AEB=AGD,AOG=EOK,OAG=OKE=90,BEDG(1)如图中,连接EG,作GHAD交DA的延长线于HOAGODE90,A,D,E,G四点共圆,ADOAEG45,DAM90,ADMAMD45, DG=1DM, H90,HDGHGD45,GHDH4,AH1,在RtAHG中, (3)如图中,当点E在CD的延长线上时作GHDA交DA的延长线于H易证AHGEDA,可得GHAB1,DG4DMAMGH, DH8,AHDHAD6,在RtAHG中, 如图31中,当点E在DC的延长
24、线上时,易证:AKEGHA,可得AHEKBC1ADGH, AD1,HG10,在RtAGH中, 综上所述,满足条件的AG的长为或【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理,等腰直角三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题21、 (1)见解析;(2)2.【解析】(1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解.【详解】(1)如图所示,点P即为所求(2)设BPx,则CP1x,由(1)中作图知APCP1x,在RtABP中,由AB2+BP2AP2可得42+x2(1x)2,
25、解得:x2,所以BP2【点睛】考核知识点:勾股定理和线段垂直平分线.22、 (1) 众数为15;(2) 3,4,15;8;(3) 月销售额定为18万,有一半左右的营业员能达到销售目标【解析】根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a3,b4,再根据数据可得15出现了5次,出现次数最多,所以众数c15;从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标【详解】解:(1)在范围内的数据有3个,在范围内的数据有4个,15出现的次数最大,则众数为15;(2)月销售额不低于25万元为后
26、面三组数据,即有8位营业员获得奖励;故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标【点睛】本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数并利用中位数的意义解决实际问题.23、(1)应购进A型台灯75盏,B型台灯25盏;(2)P=5m+2000;(3)商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900
27、元【解析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100-x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)根据题意列出方程即可;(3)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值【详解】解:(1)设商场应购进A型台灯x盏,则B型台灯为(100 x)盏,根据题意得,30 x+50(100 x)=3500,解得x=75,所以,10075=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利P元,则P=(4530)m+(7050)(100m),=15m+200020m,=5m+2000,即P=5m+2000,(3)B型台灯的进货数量不超过A型台灯数量的4倍,100m4m,m20,k=50,P随m的增大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 骨创伤的诊断与外科治疗
- 犊牛肺炎并发症及护理
- 糖尿病性神经病变
- 通信实验室安全教育
- 2.3.1 物质的量单位-摩尔 课件高一上学期化学人教版(2019)必修第一册
- 2.1.1+共价键++课件高二上学期化学人教版(2019)选择性必修2
- 智慧酒店规划设计方案
- 美术老师述职报告
- 物联网工程知识点
- 水源污染应急处置
- 安捷伦N9020A频谱仪操作说明
- 女生生理卫生课 课件
- 小学六年级数学计算题100道(含答案)
- 企业介绍PPT模板
- 电力系统分析智慧树知到答案章节测试2023年东北电力大学
- 危险化学品安全周知卡(乙酸乙酯)
- 孤立性肺结节的CT诊断
- GB/T 37194.2-2018塑料聚苯硫醚(PPS)模塑和挤出材料第2部分:试样制备和性能测定
- 英语教师基本功大赛笔试试题(附答案)
- 化粪池危险防护应急预案
- GB/T 20572-2019天然肠衣生产HACCP应用规范
评论
0/150
提交评论