




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,则图中
2、空白框中应填入( )A,BC,D,2在平面直角坐标系中,已知是圆上两个动点,且满足,设到直线的距离之和的最大值为,若数列的前项和恒成立,则实数的取值范围是( )ABCD3已知实数,则下列说法正确的是( )ABCD4已知数列为等差数列,为其前 项和,则( )ABCD5函数在上的图象大致为( )ABCD6空气质量指数是反映空气状况的指数,指数值趋小,表明空气质量越好,下图是某市10月1日-20日指数变化趋势,下列叙述错误的是( )A这20天中指数值的中位数略高于100B这20天中的中度污染及以上(指数)的天数占C该市10月的前半个月的空气质量越来越好D总体来说,该市10月上旬的空气质量比中旬的空气
3、质量好7已知,则的大小关系为ABCD8已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( )ABCD9如图,在矩形中的曲线分别是,的一部分,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则()ABCD大小关系不能确定10函数f(x)=2x-3+1x-3的定义域为()A32,3)(3,+) B(-,3)(3,+)C32,+) D(3,+)11已知集合,若,则( )A4B4C8D812将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13一个四面体的顶点在空
4、间直角坐标系中的坐标分别是,则该四面体的外接球的体积为_14在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求直线和曲线的普通方程;(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.15若双曲线的两条渐近线斜率分别为,若,则该双曲线的离心率为_.16设f(x)etx(t0),过点P(t,0)且平行于y轴的直线与曲线C:yf(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1),则PRS的面积的最小值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知都是各项不为零的数列,且满足其中是数列的前项和,是公差为的
5、等差数列(1)若数列是常数列,求数列的通项公式;(2)若是不为零的常数),求证:数列是等差数列;(3)若(为常数,),求证:对任意的恒成立18(12分)已知函数(1)解不等式:;(2)求证:19(12分)已知数列,数列满足,n(1)若,求数列的前2n项和;(2)若数列为等差数列,且对任意n,恒成立当数列为等差数列时,求证:数列,的公差相等;数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由20(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线:.过点的直线:(为参数)与曲线相交于,两点.(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求
6、实数的值.21(12分)已知函数.(1)设,若存在两个极值点,且,求证:;(2)设,在不单调,且恒成立,求的取值范围.(为自然对数的底数).22(10分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】依题意问题是,然后按直到型验证即可.【详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,故选:A.【点睛】本题
7、考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.2B【解析】由于到直线的距离和等于中点到此直线距离的二倍,所以只需求中点到此直线距离的最大值即可。再得到中点的轨迹是圆,再通过此圆的圆心到直线距离,半径和中点到此直线距离的最大值的关系可以求出。再通过裂项的方法求的前项和,即可通过不等式来求解的取值范围.【详解】由,得,.设线段的中点,则,在圆上,到直线的距离之和等于点到该直线的距离的两倍,点到直线距离的最大值为圆心到直线的距离与圆的半径之和,而圆的圆心到直线的距离为,.故选:【点睛】本题考查了向量数量积,点到直线的距离,数列求和等知识,是一道不错的综合题.3C【解析】利用不等
8、式性质可判断,利用对数函数和指数函数的单调性判断.【详解】解:对于实数, ,不成立对于不成立对于利用对数函数单调递增性质,即可得出对于指数函数单调递减性质,因此不成立 故选:【点睛】利用不等式性质比较大小要注意不等式性质成立的前提条件解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法4B【解析】利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.【详解】由等差数列的性质可得,.故选:B.【点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.5A【解析】首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【详解】
9、解:依题意,故函数为偶函数,图象关于轴对称,排除C;而,排除B;,排除D.故选:.【点睛】本题考查函数图象的识别,函数的奇偶性的应用,属于基础题.6C【解析】结合题意,根据题目中的天的指数值,判断选项中的命题是否正确.【详解】对于,由图可知天的指数值中有个低于,个高于,其中第个接近,第个高于,所以中位数略高于,故正确.对于,由图可知天的指数值中高于的天数为,即占总天数的,故正确.对于,由图可知该市月的前天的空气质量越来越好,从第天到第天空气质量越来越差,故错误.对于,由图可知该市月上旬大部分指数在以下,中旬大部分指数在以上,所以该市月上旬的空气质量比中旬的空气质量好,故正确.故选:【点睛】本题
10、考查了对折线图数据的分析,读懂题意是解题关键,并能运用所学知识对命题进行判断,本题较为基础.7D【解析】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,即,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较这就必须掌握一些特殊方法在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确8D【解析】分别
11、求出球和圆柱的体积,然后可得比值.【详解】设圆柱的底面圆半径为,则,所以圆柱的体积.又球的体积,所以球的体积与圆柱的体积的比,故选D.【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.9B【解析】先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得【详解】根据题意,阴影部分的面积的一半为:,于是此点取自阴影部分的概率为又,故故选B【点睛】本题考查了几何概型,定积分的计算以及几何意义,属于中档题10A【解析】根据幂函数的定义域与分母不为零列不等式组求解即可.【详解】因为函数y=2x-3+1x-3,2x-30 x-30,解得x32且x3;函数f(x)=2x-3+1x-3的
12、定义域为32,33,+, 故选A【点睛】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数fx的定义域为a,b,则函数fgx的定义域由不等式agxb求出.11B【解析】根据交集的定义,可知,代入计算即可求出.【详解】由,可知,又因为,所以时,解得.故选:B.【点睛】本题考查交集的概念,属于基础题.12B【解析】由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,其图像关于坐标原点对
13、称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】将四面体补充为长宽高分别为的长方体,体对角线即为外接球的直径,从而得解.【详解】采用补体法,由空间点坐标可知,该四面体的四个顶点在一个长方体上,该长方体的长宽高分别为,长方体的外接球即为该四面体的外接球,外接球的直径即为长方体的体对角线,所以球半径为,体积为.【点睛】本题主要考查了四面体外接球的常用求法:补体法,通过补体得到长方体的外接球从而得解,属于基础题.14(1),;(2),.【解析】(1)利用代入消参的方法即可将两个参
14、数方程转化为普通方程;(2)利用参数方程,结合点到直线的距离公式,将问题转化为求解二次函数最值的问题,即可求得.【详解】(1)直线的普通方程为.在曲线的参数方程中,所以曲线的普通方程为.(2)设点.点到直线的距离.当时,所以点到直线的距离的最小值为.此时点的坐标为.【点睛】本题考查将参数方程转化为普通方程,以及利用参数方程求距离的最值问题,属中档题.152【解析】由题得,再根据求解即可.【详解】双曲线的两条渐近线为,可令,则,所以,解得.故答案为:2.【点睛】本题考查双曲线渐近线求离心率的问题.属于基础题.16【解析】计算R(t,0),PRt(t),PRS的面积为S,导数S,由S0得t1,根据
15、函数的单调性得到最值.【详解】PQy轴,P(t,0),Q(t,f(t)即Q(t,),又f(x)etx(t0)的导数f(x)tetx,过Q的切线斜率kt,设R(r,0),则k,rt,即R(t,0),PRt(t),又S(1,f(1)即S(1,et),PRS的面积为S,导数S,由S0得t1,当t1时,S0,当0t1时,S0,t1为极小值点,也为最小值点,PRS的面积的最小值为故答案为:【点睛】本题考查了利用导数求面积的最值问题,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)详见解析;(3)详见解析.【解析】(1)根据,可求得,再根据
16、是常数列代入根据通项与前项和的关系求解即可.(2)取,并结合通项与前项和的关系可求得再根据化简可得,代入化简即可知,再证明也成立即可.(3)由(2) 当时,代入所给的条件化简可得,进而证明可得,即数列是等比数列.继而求得,再根据作商法证明即可.【详解】解:是各项不为零的常数列,则,则由,及得,当时,两式作差,可得当时,满足上式,则;证明:,当时,两式相减得:即即又,即当时,两式相减得:数列从第二项起是公差为的等差数列又当时,由得,当时,由,得故数列是公差为的等差数列;证明:由,当时,即,即,即,当时,即故从第二项起数列是等比数列,当时,另外,由已知条件可得,又,因而令,则故对任意的恒成立【点睛
17、】本题主要考查了等差等比数列的综合运用,需要熟练运用通项与前项和的关系分析数列的递推公式继而求解通项公式或证明等差数列等.同时也考查了数列中的不等式证明等,需要根据题意分析数列为等比数列并求出通项,再利用作商法证明.属于难题.18(1); (2)见解析.【解析】(1)代入得,分类讨论,解不等式即可;(2)利用绝对值不等式得性质,比较大小即可.【详解】(1)由于,于是原不等式化为,若,则,解得;若,则,解得;若,则,解得综上所述,不等式解集为(2)由已知条件,对于,可得又,由于,所以又由于,于是所以【点睛】本题考查了绝对值不等式得求解和恒成立问题,考查了学生分类讨论,转化划归,数学运算能力,属于
18、中档题.19(1)(2)见解析数列不能为等比数列,见解析【解析】(1)根据数列通项公式的特点,奇数项为等差数列,偶数项为等比数列,选用分组求和的方法进行求解;(2)设数列的公差为,数列的公差为,当n为奇数时,得出;当n为偶数时,得出,从而可证数列,的公差相等;利用反证法,先假设可以为等比数列,结合题意得出矛盾,进而得出数列不能为等比数列【详解】(1)因为,所以,且,由题意可知,数列是以1为首项,2为公差的等差数列,数列是首项和公比均为4的等比数列,所以;(2)证明:设数列的公差为,数列的公差为,当n为奇数时,若,则当时,即,与题意不符,所以, 当n为偶数时,若,则当时,即,与题意不符,所以,综上,原命题得证;假设可以为等比数列,设公比为q,因为,所以,所以,因为当时,所以当n为偶数,且时,即当n为偶数,且时,不成立,与题意矛盾,所以数列不能为等比数列【点睛】本题主要考查数列的求和及数列的综合,数列求和时一般是结合通项公式的特征选取合适的求和方法,数列综合题要回归基本量,充分挖掘题目已知信息,细思细算,本题综合性较强,难度较大,侧重考查逻辑推理和数学运算的核心素养.20(1),;(2).【解析】(1)将代入求解,由(为参数)消去即可.(2)将(为参数)与联立得,设,两点对应的参数为,则,再根据,即,利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国制动鼓镗床行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 中国螺杆空压机市场调查研究及行业投资潜力预测报告
- 中国视频服务器系统行业市场调查研究及投资潜力预测报告
- 自动恒温运风焗炉行业深度研究分析报告(2024-2030版)
- 2025年中国热力发电站行业市场深度研究及投资战略咨询报告
- 2025年胶粘剂市场分析现状
- 工程勘察报告电力工程勘察与设计
- 药品价格培训课件
- 2025年高处坠落事故现场处置方案范文(二)
- 中国高端水产养殖市场全面调研及行业投资潜力预测报告
- 2024年攀枝花市仁和区向招考社区工作者真题
- BIM在公路工程中的三维可视化应用-洞察阐释
- 长鑫存储在线试题及答案
- 公司贵重金属管理制度
- 离散数学考试题及答案
- 安徽省安庆望江县联考2025年七年级英语第二学期期中质量检测模拟试题含答案
- 小学劳动教育校本课程开发实践与研究
- 森林草原防火 无人机巡查技术规范 编制说明
- 2025-2030中国发泡聚苯乙烯泡沫行业市场现状供需分析及投资评估规划分析研究报告
- 2025年江苏省苏州吴中、吴江、相城区初三英语一模试题及答案
- 智能化汽车中的专利战略布局-洞察阐释
评论
0/150
提交评论