版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数,则的虚部是( )ABCD12关于函数有下述四个结论:( )是偶函数; 在区间上是单调
2、递增函数;在上的最大值为2; 在区间上有4个零点.其中所有正确结论的编号是( )ABCD3已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为( )ABCD4赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )ABCD5如图在一个的二面角的棱有两个点
3、,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为( )A4BC2D6从抛物线上一点 (点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为( )ABCD7已知函数为奇函数,则( )AB1C2D38设i为虚数单位,若复数,则复数z等于( )ABCD09已知过点且与曲线相切的直线的条数有( )A0B1C2D310已知空间两不同直线、,两不同平面,下列命题正确的是( )A若且,则B若且,则C若且,则D若不垂直于,且,则不垂直于11函数在上为增函数,则的值可以是( )A0BCD12如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂
4、直的有( )A2对B3对C4对D5对二、填空题:本题共4小题,每小题5分,共20分。13已知函数有两个极值点、,则的取值范围为_.14已知数列中,为其前项和,则_,_.15已知等差数列满足,则的值为_16在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,若点的横坐标为1,则点的横坐标为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,其中,.(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.(2)若在处取得极大值,求实数a的取值范围.18(12分)已知数列的各项均为正数,为其前n项和,对于任意的满足关系式
5、.(1)求数列的通项公式;(2)设数列的通项公式是,前n项和为,求证:对于任意的正数n,总有.19(12分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.20(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A 级;(ii
6、)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B 级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C 级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D 级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.求10件手工艺品中不能外销的手工艺品最有可能是
7、多少件;记1件手工艺品的利润为X元,求X的分布列与期望.21(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,求的取值范围.22(10分)已知,分别为内角,的对边,且.(1)证明:;(2)若的面积,求角.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.【详解】,所以的虚部为.故选:C【点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.2C【解析】根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.
8、【详解】的定义域为.由于,所以为偶函数,故正确.由于,所以在区间上不是单调递增函数,所以错误.当时,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以错误.依题意,当时,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以正确.综上所述,正确的结论序号为.故选:C【点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.3A【解析】根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双
9、曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.4D【解析】设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【详解】由题意,设,则,即小正六边形的边长为,所以,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题5A【解析】由,两边平
10、方后展开整理,即可求得,则的长可求【详解】解:,故选:【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题6A【解析】根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.【详解】设点的坐标为,由题意知,焦点,准线方程,所以,解得,把点代入抛物线方程可得,因为,所以,所以点坐标为,代入斜率公式可得,.故选:A【点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.7B【解析】根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即
11、,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.8B【解析】根据复数除法的运算法则,即可求解.【详解】.故选:B.【点睛】本题考查复数的代数运算,属于基础题.9C【解析】设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程【详解】若直线与曲线切于点,则,又,解得,过点与曲线相切的直线方程为或,故选C【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题10C【解析】因答
12、案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确应选答案C11D【解析】依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.【详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D【点睛】本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.12C【解析】画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案【详解】该几何
13、体是一个四棱锥,直观图如下图所示,易知平面平面,作POAD于O,则有PO平面ABCD,POCD,又ADCD,所以,CD平面PAD,所以平面平面,同理可证:平面平面,由三视图可知:POAOOD,所以,APPD,又APCD,所以,AP平面PCD,所以,平面平面,所以该多面体各表面所在平面互相垂直的有4对【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13【解析】确定函数的定义域,求导函数,利用极值的定义,建立方程,结合韦达定理,即可求的取值范围【详解】函数的定义域为,依题意,方程有两个不等的正根、(其中)
14、,则,由韦达定理得,所以,令,则,当时,则函数在上单调递减,则,所以,函数在上单调递减,所以,.因此,的取值范围是.故答案为:.【点睛】本题考查了函数极值点问题,考查了函数的单调性、最值,将的取值范围转化为以为自变量的函数的值域问题是解答的关键,考查计算能力,属于中等题.148 (写为也得分) 【解析】由,得,.当时,所以,所以的奇数项是以1为首项,以2为公比的等比数列;其偶数项是以2为首项,以2为公比的等比数列.则,.1511【解析】由等差数列的下标和性质可得,由即可求出公差,即可求解;【详解】解:设等差数列的公差为,又因为,解得故答案为:【点睛】本题考查等差数列的通项公式及等差数列的性质的
15、应用,属于基础题.161【解析】当时,得,或,依题意可得,可求得,继而可得答案【详解】因为点的横坐标为1,即当时,所以或,又直线与函数的图象在轴右侧的公共点从左到右依次为,所以,故,所以函数的关系式为当时,(1),即点的横坐标为1,为二函数的图象的第二个公共点故答案为:1【点睛】本题考查三角函数关系式的恒等变换、正弦型函数的性质的应用,主要考查学生的运算能力及思维能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) 答案见解析(2) 【解析】(1)假设函数的图象与x轴相切于,根据相切可得方程组,看方程是否有解即可;(2)求出的导数,设(),根据函数的单调性
16、及在处取得极大值求出a的范围即可.【详解】(1)函数的图象不能与x轴相切,理由若下:.假设函数的图象与x轴相切于则即显然,代入中得,无实数解.故函数的图象不能与x轴相切.(2)(),设(), 恒大于零.在上单调递增.又,存在唯一,使,且时,时,当时,恒成立,在单调递增,无极值,不合题意.当时,可得当时,当时,.所以在内单调递减,在内单调递增,所以在处取得极小值,不合题意.当时,可得当时,当时,.所以在内单调递增,在内单调递减,所以在处取得极大值,符合题意.此时由得即,综上可知,实数a的取值范围为.【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题18(
17、1)(2)证明见解析【解析】(1)根据公式得到,计算得到答案.(2),根据裂项求和法计算得到,得到证明.【详解】(1)由已知得时,故.故数列为等比数列,且公比.又当时,.(2).【点睛】本题考查了数列通项公式和证明数列不等式,意在考查学生对于数列公式方法的综合应用.19(1)(2)不存在;详见解析【解析】(1)将函数去绝对值化为分段函数的形式,从而可求得函数的最小值,进而可得m.(2)由,利用基本不等式即可求出.【详解】(1);(2),若,同号,不成立;或,异号,不成立;故不存在实数,使得,.【点睛】本题考查了分段函数的最值、基本不等式的应用,属于基础题.20(1)(2)2 期望值为X9006
18、00300100P【解析】(1)一件手工艺品质量为B级的概率为.(2)由题意可得一件手工艺品质量为D 级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,则,则,.由得,所以当时,即,由得,所以当时,所以当时,最大,即10件手工艺品中不能外销的手工艺品最有可能是2件. 由上可得一件手工艺品质量为A 级的概率为,一件手工艺品质量为B级的概率为,一件手工艺品质量为C 级的概率为,一件手工艺品质量为D 级的概率为,所以X的分布列为X900600300100P则期望为.21(1)答案不唯一,具体见解析(2)【解析】(1)由于函数,得出,分类讨论当和时,的正负,进而得出的单调性;(2)求出,令,得,设,通过导函数,可得出在上的单调性和值域,再分类讨论和时,的单调性,再结合,恒成立,即可求出的取值范围.【详解】解:(1)因为, 所以,当时,在上单调递减.当时,令,则;令,则,所以在单调递增,在上单调递减.综上所述,当时,在上单调递减;当时,在上单调递增,在上单调递减.(2)因为,可知,令,得.设,则.当时,在上单调递增,所以在上的值域是,即.当时,没有实根,且,在上单调递减,符合题意.当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创新教育模式中的创意策划策略
- 创业创新的商业模型教育行业的探索
- 创新成果的全球专利申请挑战与机遇
- AI智能家居系统打造智慧家庭生活新体验
- 健康医疗在家庭中的推广与应用提高生活质量
- 企业如何借助工业互联网平台提升效率
- 2014沪教版七年级数学上学期期末测卷
- 企业级智能制造技术在办公自动化中的应用实践
- 体育锻炼与学习效率的相互促进机制
- 从思维到行动实验教学中创新能力培养的路径研究
- 中职生家访记录内容
- Q∕GDW 10250-2021 输变电工程建设安全文明施工规程
- 客运企业双重预防体系培训(57页)
- 新概念 二 Lesson 75 SOS
- 铝合金压铸件的标准
- 吹风机成品过程质量控制检查指引
- 固定资产情况表
- 沥青路面施工监理工作细则
- 《彩色的中国》音乐教学设计
- 人教版八年级上册英语单词表默写版(直接打印)
- 4.初中物理仪器配备目录清单
评论
0/150
提交评论