版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、姓 名: 学 号: 得 分: 教师签名: 离散数学作业3离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成并上交任课教师(不收电子稿)。并在03任务界面下方点击“保存”和“交卷”按钮,以便教师评分。一、单项选择题1若集合A2,a, a
2、 ,4,则下列表述正确的是( B ) Aa,aA B a A C2A DA 2设B = 2, 3, 4, 2,那么下列命题中错误的是( B ) A2B B2, 2, 3, 4B C2B D2, 2B3若集合A=a,b, 1,2 ,B= 1,2,则( D ) AB A BA B CB A DB A 4设集合A = 1, a ,则P(A) = ( C ) A1, a B,1, a C,1, a, 1, a D1, a, 1, a 5设集合A = 1,2,3,R是A上的二元关系,R =a , baA,b A且则R具有的性质为( B ) A自反的 B对称的 C传递的 D反对称的 6设集合A = 1,2
3、,3,4,5,6 上的二元关系R =a , ba , bA,且a =b ,则R具有的性质为( D ) A不是自反的 B不是对称的 C反自反的 D传递的 7设集合A=1 , 2 , 3 , 4上的二元关系R = 1 , 1,2 , 2,2 , 3,4 , 4,S = 1 , 1,2 , 2,2 , 3,3 , 2,4 , 4,则S是R的( C )闭包 A自反 B传递 C对称 D以上都不对 8设集合A=a, b,则A上的二元关系R=,是A上的( C )关系 A是等价关系但不是偏序关系 B是偏序关系但不是等价关系 C既是等价关系又是偏序关系 D不是等价关系也不是偏序关系24135 9设集合A = 1
4、 , 2 , 3 , 4 , 5上的偏序关系的哈斯图如右图所示,若A的子集B = 3 , 4 , 5,则元素3为B的( C ) A下界 B最大下界 C最小上界 D以上答案都不对 10设集合A =1 , 2, 3上的函数分别为:f = 1 , 2,2 , 1,3 , 3,g = 1 , 3,2 , 2,3 , 2,h = 1 , 3,2 , 1,3 , 1,则 h =( B ) (A)fg (B)gf (C)ff (D)gg二、填空题 1设集合,则AB= 1,2,3 ,AB= 1,2 2设集合,则P(A)-P(B )= 3,1,3,2,3,1,2,3 ,A B= 1,1,1,2,2,1,2,2,
5、3,1,3,2 3设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 4设集合A = 1,2,3,4,5 ,B = 1,2,3,R从A到B的二元关系,R =a , baA,bB且2a + b4则R的集合表示式为 1,1,1,2,1,3,2,1,2,2,3,1 5设集合A=1, 2, 3, 4 ,B=6, 8, 12, A到B的二元关系R那么R1 6,3,8,4 6设集合A=a, b, c, d,A上的二元关系R=, , , ,则R具有的性质是没有任何性质7设集合A=a, b, c, d,A上的二元关系R=, , , ,若在R中再增加两个元素, ,则新得到的关系就具有对称性8设A
6、=1, 2上的二元关系为R=|xA,yA, x+y =10,则R的自反闭包为 1,1,2,2 9设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含 1,1,2,2,3,3 等元素10设集合A=1, 2,B=a, b,那么集合A到B的双射函数是 =1,a,2,b或=1,b,2,a 三、判断说明题(判断下列各题,并说明理由)1若集合A = 1,2,3上的二元关系R=,则(1) R是自反的关系; (2) R是对称的关系解:(1)错误。R不具有自反的关系,因为R。 (2)错误。R不具有对称的关系R。 2如果R1和R2是A上的自反关系,判断结论:“R-11、R1R2、R1R2是自
7、反的” 是否成立?并说明理由 解:成立。对于集合A中的任意元素a,若R1为A上的自反关系,有a,aR1,则a,aR-11,故R-11是A上的自反关系。对于任意aA,由R1和R2是A上的自反关系,有a,aR1且a,aR2,则a,aR1R2,故 R1R2是A上的自反关系。同理可证:R1R2也是A上的自反关系。3设R,S是集合A上的对称关系,判断RS是否具有对称性,并说明理由 解:RS具有对称性。对任意a,bRS,有a,bR且a,bS,又R,S是集合A上的对称关系,则b,aR且b,aS,所以b,aRS,即证RS是集合A上的对称关系。 4设集合A=1, 2, 3, 4,B=2, 4, 6, 8,判断下
8、列关系f是否构成函数f:,并说明理由(1) f=, , , ; (2)f=, , ;(3) f=, , , 解:(1)不构成函数。因为对于3A,在B中没有元素与之对应。(2)不构成函数。因为对于4A,在B中没有元素与之对应。(3)构成函数。因为A中任意一个元素都有A中唯一的元素相对应。四、计算题1设,求:(1) (AB)C; (2) (AB)- (BA) (3) P(A)P(C); (4) AB解:(1) (AB)C=11,3,5=1,3,5(2) (AB)- (BA)=1,2,4,5-1=2,4,5(3) P(A)P(C)=,1,4,1,4,2,4,2,4=1,1,4(4) AB=(A-B)
9、 (B-A)=42,5=2,4,52设集合Aa, b, c, d ,B=a, b, c, d ,求(1) BA; (2) AB; (3) AB; (4)BA解:(1) BA=(2) AB=a, b, c, d , a, b, c, d (3) AB=a, b, c, d (4)BA=a,a, b,a,c,a,d,b,a, b,b,c,b,d,c, d ,a, b,c, d ,c,c, d ,d3设A=1,2,3,4,5,R=|xA,yA且x+y4,S=|xA,yA且x+y0,试求R,S,RS,SR,R-1,S-1,r(S),s(R) 解:R=1,1,1,2,1,3,2,1,2,2,3,1,S=
10、RS=SR=R-1=1,1,2,1,3,1,1,2,2,2,1,3S-1=r(S)= 1,1,2,2,3,3,4,4,5,5s(R)= 1,1,1,2,1,3,2,1,2,2,3,1 4设A=1, 2, 3, 4, 5, 6, 7, 8,R是A上的整除关系,B=2, 4, 6(1) 写出关系R的表示式; (2 )画出关系R的哈斯图; (3) 求出集合B的最大元、最小元 解:(1) R=1,1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,2,2,2,4,2,6,2,8,3,3,3,6,4,4,4,8,5,5,6,6,7,7,8,8(2 ) 关系R的哈斯图15637482(3) 集合B
11、的没有最大元,最小元是2五、证明题 1试证明集合等式:A (BC)=(AB) (AC)证明:设任意 x A (BC),那么 x A或x BC,也就是 x A或x B,且 x A或x C;由此得 x AB 且 x AC,即x (AB) (AC)所以, A (BC) (AB) (AC)又因为对 任意 x (AB) (AC),由 x AB且x AC,也就是 x A或x B,且x A或 x C;得 x A 或 x BC,即 x A (BC)所以, (AB) (AC) A (BC)故A (BC)=(AB) (AC) 2对任意三个集合A, B和C,试证明:若AB = AC,且A,则B = C 证明:(1)对于任意a,bAB,其中aA,bB,因为AB = AC,必有a,bAC,其中bC,因此B C。 (2)同理,对于任意a,cA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创新教育模式中的创意策划策略
- 创业创新的商业模型教育行业的探索
- 创新成果的全球专利申请挑战与机遇
- AI智能家居系统打造智慧家庭生活新体验
- 健康医疗在家庭中的推广与应用提高生活质量
- 企业如何借助工业互联网平台提升效率
- 2014沪教版七年级数学上学期期末测卷
- 企业级智能制造技术在办公自动化中的应用实践
- 体育锻炼与学习效率的相互促进机制
- 从思维到行动实验教学中创新能力培养的路径研究
- 中职生家访记录内容
- Q∕GDW 10250-2021 输变电工程建设安全文明施工规程
- 客运企业双重预防体系培训(57页)
- 新概念 二 Lesson 75 SOS
- 铝合金压铸件的标准
- 吹风机成品过程质量控制检查指引
- 固定资产情况表
- 沥青路面施工监理工作细则
- 《彩色的中国》音乐教学设计
- 人教版八年级上册英语单词表默写版(直接打印)
- 4.初中物理仪器配备目录清单
评论
0/150
提交评论