空间几何体的表面积与体积30721_第1页
空间几何体的表面积与体积30721_第2页
空间几何体的表面积与体积30721_第3页
空间几何体的表面积与体积30721_第4页
空间几何体的表面积与体积30721_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.3.1 柱体、椎体、台体的表面积与体积一、柱体、锥体、台体的表面积(1)矩形面积公式: _。(2)三角形面积公式:_。 正三角形面积公式:_。(3)圆面积面积公式:_。(4)圆周长公式: _。(5)扇形面积公式: _。(6)梯形面积公式: _复习回顾柱体锥体台体球几何体的分类多面体旋转体 在初中已经学过了正方体和长方体的表面积,你知道正方体和长方体的表面积怎样得到的几何体表面积展开图平面图形面积空间问题平面问题把直三棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?正棱锥的侧面展开图是什么?侧面展开正棱锥的侧面积如何计算?表面积如何计算? 正棱台的侧面展开图是什么?侧面展开hh正棱台的侧

2、面积如何计算? 表面积如何计算?棱柱、棱锥、棱台的表面积h一般地,多面体的表面积就是各个面的面积之和表面积=侧面积+底面积小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键; 2、对应的面积公式C=0C=C 例1 已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积 BCAS 例1 已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积 DBCAS所以: 因此,四面体S-ABC 的表面积交BC于点D解:先求 的面积,过点S作典型例题因为求多面体的表面积可以通过求各个平面多边形的面积和得到,那么旋转体的表面积该如何求呢?思考OOOOOOOrr上底扩大r0上底缩小三者之间关系

3、圆柱、圆锥、圆台三者的表面积公式之间有什么关系? 例2 如图,一个圆台形花盆盆口直径20 cm,盆底直径为15cm,底部渗水圆孔直径为1.5 cm,盆壁长15cm那么花盆的表面积约是多少平方厘米( 取3.14,结果精确到1 )? 解:由圆台的表面积公式得 花盆的表面积:答:花盆的表面积约是999 典型例题各面面积之和小结:展开图 圆台圆柱圆锥空间问题转化成平面问题棱柱、棱锥、棱台圆柱、圆锥、圆台所用的数学思想:柱体、锥体、台体的表面积二、柱体、锥体、台体的体积长方体体积:正方体体积:圆柱的体积:abhaaah底面积高柱体体积 以前学过特殊的棱柱正方体、长方体以及圆柱的体积公式,它们的体积公式可

4、以统一为:柱体体积柱体(棱柱、圆柱)的体积公式:(其中S为底面面积,h为柱体的高)3.1锥体(棱锥、圆锥)的体积 (底面积S,高h) 注意:三棱锥的顶点和底面可以根据需要变换,四面体的每一个面都可以作为底面,可以用来求点到面的距离问题:锥体(棱锥、圆锥)的体积椎体(圆锥、棱锥)的体积公式:锥体体积(其中S为底面面积,h为高)h 由此可知, 棱柱与圆柱的体积公式类似,都是底面面积乘高; 棱锥与圆锥的体积公式类似,都是底面面积乘高的 ss/ss/hx四.台体的体积V台体=上下底面积分别是s/,s,高是h,则台体(棱台、圆台)的体积公式台体体积柱体、锥体、台体的体积公式之间有什么关系?S为底面面积,

5、h为柱体高 分别为上、下底面面积,h 为台体高S为底面面积,h为锥体高上底扩大上底缩小例2 如图,一个圆台形花盆盆口直径20 cm,盆底直径为15cm,底部渗水圆孔直径为1.5 cm,盆壁长15cm那么花盆的表面积约是多少平方厘米? 例3 有一堆规格相同的铁制(铁的密度是 )六角螺帽共重5.8kg,已知底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个( 取3.14)? 解:六角螺帽的体积是六棱柱的体积与圆柱体积之差,即:所以螺帽的个数为(个)答:这堆螺帽大约有252个典型例题RR球的体积:一个半径和高都等于R的圆柱,挖去一个以上底面为底面,下底面圆心为顶

6、点的圆锥后,所得的几何体的体积与一个半径为R的半球的体积相等。探究RR半径为R的球的体积 第一步:分割O球面被分割成n个网格, 表面积分别为:则球的表面积:则球的体积为:设“小锥体”的体积为:O知识点三、球的表面积和体积(O第二步:求近似和O由第一步得:第三步:转化为球的表面积 如果网格分的越细,则: 由 得: 球的体积:的值就趋向于球的半径RO“小锥体”就越接近小棱锥。半径为R的球的表面积公式设球的半径为R,则球的体积公式为V球 .43R3例1(2009年高考上海卷)若球O1、O2表面积之比4,则它们的半径之比_.(1)若球的表面积变为原来的2倍,则半径变为原来的倍。(2)若球半径变为原来的

7、2倍,则表面积变为原来的倍。(3)若两球表面积之比为1:2,则其体积之比是。(4)若两球体积之比是1:2,则其表面积之比是。例2:例3.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积。ABCDD1C1B1A1OABCDD1C1B1A1O分析:正方体内接于球,则由球和正方体都是中心对称图形可知,它们中心重合,则正方体对角线与球的直径相等。略解:变题1.如果球O和这个正方体的六个面都相切,则有S=。变题2.如果球O和这个正方体的各条棱都相切,则有S=。关键:找正方体的棱长a与球半径R之间的关系OABC例4已知过球面上三点A、B、C的截面到球心O的距离

8、等于球半径的一半,且AB=BC=CA=cm,求球的体积,表面积解:如图,设球O半径为R,截面O的半径为r,题型一 旋转体的表面积及其体积 如图所示,半径为R的半圆内的 阴影部分以直径AB所在直线为轴,旋 转一周得到一几何体,求该几何体的 表面积(其中BAC=30)及其体积. 先分析阴影部分旋转后形成几何体的 形状,再求表面积.解 如图所示,过C作CO1AB于O1,在半圆中可得BCA=90,BAC=30,AB=2R,AC= ,BC=R,S球=4R2, 解决这类题的关键是弄清楚旋转后所形成的图形的形状,再将图形进行合理的分割,然后利用有关公式进行计算. 知能迁移2 已知球的半径为R,在球内作一个内

9、 接圆柱,这个圆柱底面半径与高为何值时,它 的侧面积最大?侧面积的最大值是多少? 解 如图为轴截面. 设圆柱的高为h,底面半径为r, 侧面积为S,则知能迁移2 已知球的半径为R,在球内作一个内 接圆柱,这个圆柱底面半径与高为何值时,它 的侧面积最大?侧面积的最大值是多少? 解 如图为轴截面. 设圆柱的高为h,底面半径为r, 侧面积为S,则题型二 多面体的表面积及其体积 一个正三棱锥的底面边长为6,侧棱长 为 ,求这个三棱锥的体积. 本题为求棱锥的体积问题.已知底面 边长和侧棱长,可先求出三棱锥的底面面积 和高,再根据体积公式求出其体积. 解 如图所示, 正三棱锥SABC. 设H为正ABC的中心

10、, 连接SH, 则SH的长即为该正三棱锥的高.连接AH并延长交BC于E,则E为BC的中点,且AHBC.ABC是边长为6的正三角形, 求锥体的体积,要选择适当的底面和高,然后应用公式 进行计算即可.常用方法:割补法和等积变换法.(1)割补法:求一个几何体的体积可以将这个几何体分割成几个柱体、锥体,分别求出锥体和柱体的体积,从而得出几何体的体积.(2)等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.求体积时,可选择容易计算的方式来计算;利用“等积性”可求“点到面的距离”.题型三 组合体的表面积及其体积 (12分)如图所示,在等腰梯形ABCD中, AB=2DC=2,DAB=60,E为AB的中点, 将ADE与BEC分别沿ED、EC向上折起, 使A、B重合,求形成的三棱锥的外接球的体积. 易知折叠成的几何体是棱长为1的正 四面体,要求外接球的体积只要求出外接球的 半径即可. 解 由已知条件知,平面图形中 AE=EB=BC=CD=DA=DE=EC=1. 折叠后得到一个正四面体. 2分 方法一 作AF平面DEC,垂足为F,F即为DE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论