版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则( )ABCD2已知,则“mn”是“ml”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥在圆内随机取一点,则该点取自阴影区域内(阴影部分由四
2、条四分之一圆弧围成)的概率是( )ABCD4已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是( )ABCD5已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表中数据m的值为( )变量x0123变量y35.57A0.9B0.85C0.75D0.56设为等差数列的前项和,若,则的最小值为( )ABCD7普通高中数学课程标准(2017版)提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是( )A甲的数据分析素养高于乙B甲
3、的数学建模素养优于数学抽象素养C乙的六大素养中逻辑推理最差D乙的六大素养整体平均水平优于甲8如图,在正四棱柱中,分别为的中点,异面直线与所成角的余弦值为,则( )A直线与直线异面,且B直线与直线共面,且C直线与直线异面,且D直线与直线共面,且9已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( )ABCD10设,若函数在区间上有三个零点,则实数的取值范围是( )ABCD11如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于( )AB1CD12三国
4、时代吴国数学家赵爽所注周髀算经中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,内角的对边分别为,已知,则的面积为_14某种牛肉干每袋的质量服从正态分布,质检部门的检测数据显示:该正态分布为,.某旅游团游客共购买这种牛肉干100袋,估计其中质量低于的袋数大约是_袋.15已知边长
5、为的菱形中,现沿对角线折起,使得二面角为,此时点,在同一个球面上,则该球的表面积为_.16记实数中的最大数为,最小数为.已知实数且三数能构成三角形的三边长,若,则的取值范围是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)设点,若直线与曲线相交于、两点,求的值18(12分)已知函数(1)当(为自然对数的底数)时,求函数的极值;(2)为的导函数,当,时,求证:19(12分)已知函数.(1)当时,求函数的图
6、象在处的切线方程;(2)讨论函数的单调性;(3)当时,若方程有两个不相等的实数根,求证:.20(12分)如图,在四棱锥中,侧面为等边三角形,且垂直于底面, ,分别是的中点.(1)证明:平面平面;(2)已知点在棱上且,求直线与平面所成角的余弦值.21(12分)设函数f(x)|xa|+|x|(a0)(1)若不等式f(x)| x|4x的解集为x|x1,求实数a的值;(2)证明:f(x)22(10分)设函数,().(1)若曲线在点处的切线方程为,求实数a、m的值;(2)若对任意恒成立,求实数a的取值范围;(3)关于x的方程能否有三个不同的实根?证明你的结论.参考答案一、选择题:本题共12小题,每小题5
7、分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】利用指数函数和对数函数的单调性,将数据和做对比,即可判断.【详解】由于,故.故选:B.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.2B【解析】构造长方体ABCDA1B1C1D1,令平面为面ADD1A1,底面ABCD为,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断【详解】如图,取长方体ABCDA1B1C1D1,令平面为面ADD1A1,底面ABCD为,直线=直线。若令AD1m,ABn,则mn,但m不垂直于若m,由平面平面可知,直线m垂直于平面,所以m垂直于平面内的任意一条直线mn是m
8、的必要不充分条件故选:B【点睛】本题考点有两个:考查了充分必要条件的判断,在确定好大前提的条件下,从mnm?和mmn?两方面进行判断;是空间的垂直关系,一般利用长方体为载体进行分析3C【解析】令圆的半径为1,则,故选C4B【解析】求出导函数,确定函数的单调性,确定函数的最值,根据零点存在定理可确定参数范围【详解】,当时,单调递增,当时,单调递减,在上只有一个极大值也是最大值,显然时,时,因此要使函数有两个零点,则,故选:B【点睛】本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围5A【解析】计算,代入回归方程可得【详解】由题意,解得故选:A.【点睛】本题考查线性回归直线
9、方程,解题关键是掌握性质:线性回归直线一定过中心点6C【解析】根据已知条件求得等差数列的通项公式,判断出最小时的值,由此求得的最小值.【详解】依题意,解得,所以.由解得,所以前项和中,前项的和最小,且.故选:C【点睛】本小题主要考查等差数列通项公式和前项和公式的基本量计算,考查等差数列前项和最值的求法,属于基础题.7D【解析】根据雷达图对选项逐一分析,由此确定叙述正确的选项.【详解】对于A选项,甲的数据分析分,乙的数据分析分,甲低于乙,故A选项错误.对于B选项,甲的建模素养分,乙的建模素养分,甲低于乙,故B选项错误.对于C选项,乙的六大素养中,逻辑推理分,不是最差,故C选项错误.对于D选项,甲
10、的总得分分,乙的总得分分,所以乙的六大素养整体平均水平优于甲,故D选项正确.故选:D【点睛】本小题主要考查图表分析和数据处理,属于基础题.8B【解析】连接,由正四棱柱的特征可知,再由平面的基本性质可知,直线与直线共面.,同理易得,由异面直线所成的角的定义可知,异面直线与所成角为,然后再利用余弦定理求解.【详解】如图所示:连接,由正方体的特征得,所以直线与直线共面.由正四棱柱的特征得,所以异面直线与所成角为.设,则,则,由余弦定理,得.故选:B【点睛】本题主要考查异面直线的定义及所成的角和平面的基本性质,还考查了推理论证和运算求解的能力,属于中档题.9D【解析】分别求出球和圆柱的体积,然后可得比
11、值.【详解】设圆柱的底面圆半径为,则,所以圆柱的体积.又球的体积,所以球的体积与圆柱的体积的比,故选D.【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.10D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2
12、)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.11D【解析】建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【详解】将抛物线放入坐标系,如图所示,设抛物线,代入点,可得焦点为,即焦点为中点,设焦点为,.故选:D【点睛】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.12A【解析】分析:设三角形的直角边分别为1,利用几何概型得出图钉落
13、在小正方形内的概率即可得出结论.解析:设三角形的直角边分别为1,则弦为2,故而大正方形的面积为4,小正方形的面积为.图钉落在黄色图形内的概率为.落在黄色图形内的图钉数大约为.故选:A.点睛:应用几何概型求概率的方法建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有
14、序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型二、填空题:本题共4小题,每小题5分,共20分。13【解析】由余弦定理先算出c,再利用面积公式计算即可.【详解】由余弦定理,得,即,解得,故的面积.故答案为:【点睛】本题考查利用余弦定理求解三角形的面积,考查学生的计算能力,是一道基础题.141【解析】根据正态分布对称性,求得质量低于的袋数的估计值.【详解】由于,所以,所以袋牛肉干中,质量低于的袋数大约是袋.故答案为:【点睛】本小题主要考查正态分布对称性的应用,属于基础题.15【解析】分别取,的中点,连接,由图形的对称性可知球心必在的延长线上,设球心为,半径为,由勾股定理可得、
15、,再根据球的面积公式计算可得;【详解】如图,分别取,的中点,连接,则易得,由图形的对称性可知球心必在的延长线上,设球心为,半径为,可得,解得,.故该球的表面积为.故答案为:【点睛】本题考查多面体的外接球的计算,属于中档题.16【解析】试题分析:显然,又,当时,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而当时,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而综上所述,的取值范围是考点:不等式、简单线性规划.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)的普通方程为,的直角坐标方程为;(2).【解析】(1)在曲线的参数方
16、程中消去参数可得出曲线的普通方程,利用两角和的正弦公式以及可将直线的极坐标方程化为普通方程;(2)设直线的参数方程为(为参数),并设点、所对应的参数分别为、,利用韦达定理可求得的值.【详解】(1)由,得,曲线的普通方程为,由,得,直线的直角坐标方程为;(2)设直线的参数方程为(为参数),代入,得,则,设、两点对应参数分别为、,.【点睛】本题考查了参数方程、极坐标方程与普通方程之间的转化,同时也考查了直线参数方程几何意义的应用,考查计算能力,属于中等题.18(1)极大值,极小值;(2)详见解析.【解析】首先确定函数的定义域和;(1)当时,根据的正负可确定单调性,进而确定极值点,代入可求得极值;(
17、2)通过分析法可将问题转化为证明,设,令,利用导数可证得,进而得到结论.【详解】由题意得:定义域为,(1)当时,当和时,;当时,在,上单调递增,在上单调递减,极大值为,极小值为.(2)要证:,即证:,即证:,化简可得:,即证:,设,令,则,在上单调递增,则由,从而有:.【点睛】本题考查导数在研究函数中的应用,涉及到函数极值的求解、利用导数证明不等式的问题;本题不等式证明的关键是能够将多个变量的问题转化为一个变量的问题,通过构造函数的方式将问题转化为函数最值的求解问题.19(1);(2)当时,在上是减函数;当时,在上是增函数;(3)证明见解析.【解析】(1)当时,求得其导函数 ,可求得函数的图象
18、在处的切线方程;(2)由已知得,得出导函数,并得出导函数取得正负的区间,可得出函数的单调性; (3)当时,由(2)得的单调区间,以当方程有两个不相等的实数根,不妨设,且有,构造函数,分析其导函数的正负得出函数的单调性,得出其最值,所证的不等式可得证.【详解】(1)当时,所以 ,所以函数的图象在处的切线方程为,即;(2)由已知得,令,得,所以当时,当时,所以在上是减函数,在上是增函数;(3)当时,由(2)得在上单调递减,在单调递增,所以,且时,当时,所以当方程有两个不相等的实数根,不妨设,且有,构造函数,则,当时,所以,在上单调递减,且,由 ,在上单调递增, .所以.【点睛】本题考查运用导函数求
19、函数在某点的切线方程,讨论函数的单调性,以及证明不等式,关键在于构造适当的函数,得出其导函数的正负,得出所构造的函数的单调性,属于难度题.20(1)证明见解析;(2).【解析】(1)由平面几何知识可得出四边形是平行四边形,可得面,再由面面平行的判定可证得面面平行;(2)由(1)可知,两两垂直,故建立空间直角坐标系,可求得面PAB的法向量,再运用线面角的向量求法,可求得直线与平面所成角的余弦值.【详解】(1),,又,,而、分别是、的中点, 故面,又且,故四边形是平行四边形,面,又,是面内的两条相交直线, 故面面. (2)由(1)可知,两两垂直,故建系如图所示,则,, 设是平面PAB的法向量,,令,则, 直线NE与平面所成角的余弦值为.【点睛】本题考查空间的面面平行的判定,以及线面角的空间向量的求解方法,属于中档题.21(1)a1;(2)见解析【解析】(1)由题意可得|xa|4x,分类讨论去掉绝对值,分别求得x的范围即可求出a的值(2)由条件利用绝对值三角不等式,基本不等式证得f(x)2【详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论