




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第6章 资本资产定价模型资本市场上的风险与收益资本资产定价模型(CAPM)是本书的第2个重点。CAPM在现代金融理论体系中的地位无论怎样强调都不过分,它不仅是贯穿全书的核心原理,也贯穿整个金融理论和实践。这一章充分运用Excel作为运算工具的优势,通过一系列从简单到复杂的示例分析,深入浅出地概括了CAPM的推导过程。最后,引用来自美国资本市场的真实数据,示范了企业风险系数的计算方法,引用的实例是美国通用电气公司(GE)。Excel 金融计算专业教程6.1 投资组合的风险与收益6.1 投资组合的风险与收益6.1.1 简单投资组合的计算6.1.2 组合中资产的相关性及比例6.1.3 特定风险与市场
2、风险6.2 优化投资组合的原理6.2.1 有效前沿与最小方差组合6.2.2 资产相关性的进一步讨论6.3 资本资产定价模型6.3.1 投资组合中的无风险资产6.3.2 Sharpe比率与市场组合6.3.3 资本资产定价模型(CAPM)6.3.4 3项资产组合的CAPM6.4 CAPM的意义与应用6.4.1 关于市场组合和无风险资产6.4.2 证券和投资组合的风险系数6.4.3 系数和SML的讨论6.1.1 简单投资组合的计算投资组合中的投资比例及其调整6.1.1 简单投资组合的计算投资组合的收益率等于成分资产收益率按其比例加权平均:两项资产组成的投资组合,其方差的计算公式是:三项资产的投资组合
3、的方差计算公式是: 6.1.2 组合中资产的相关性及比例两项完全正相关的资产组成的投资组合6.1.2 组合中资产的相关性及比例两项完全负相关的资产组成的投资组合6.1.2 组合中资产的相关性及比例正相关的两项资产(= 0.6)组成的投资组合6.1.2 组合中资产的相关性及比例投资组合中的比例对收益和风险的影响6.1.3 特定风险与市场风险资产种类数量对投资组合风险的影响投资组合中的资产种数不可分散风险可分散风险投资组合的标准差6.1.3 特定风险与市场风险将投资从一项资产扩展到多种资产上称为投资分散化。而实施分散化投资的理由就在于它可以消除一部分投资风险。上页图中曲线下方与阴影之间部分是可以通
4、过分散化而消除的风险,称为特定风险,也称为可分散风险或非系统风险。下方的阴影部分代表整个资本市场所具有的风险,这种风险是不能通过分散化而消除的,称为市场风险、不可分散风险或系统风险。 在投资组合中,单项资产所具有的非系统风险可以被组合所消除,真正起作用的就是单项资产对整个组合风险所贡献的这部分风险,称为资产的相关风险。6.2 优化投资组合的原理6.1 投资组合的风险与收益6.1.1 简单投资组合的计算6.1.2 组合中资产的相关性及比例6.1.3 特定风险与市场风险6.2 优化投资组合的原理6.2.1 有效前沿与最小方差组合6.2.2 资产相关性的进一步讨论6.3 资本资产定价模型6.3.1
5、投资组合中的无风险资产6.3.2 Sharpe比率与市场组合6.3.3 资本资产定价模型(CAPM)6.3.4 3项资产组合的CAPM6.4 CAPM的意义与应用6.4.1 关于市场组合和无风险资产6.4.2 证券和投资组合的风险系数6.4.3 系数和SML的讨论6.2.1 有效前沿与最小方差组合投资组合的预期收益率与标准差之间的关系 6.2.1 有效前沿与最小方差组合曲线上的点代表在不同投资比例下投资组合P的预期收益率与标准差,也就是收益与风险的关系。曲线上所有的点都代表在给定的预期收益率水平下具有最小方差的组合。曲线左侧顶端的点代表所有可行资产组合中的最小方差组合。沿曲线从这一点向上所有的
6、点都是对应风险水平下可以获得的最大预期收益率,称之为有效前沿。计算最小方差组合有两种可行的方法,一种是利用Excel中的规划求解工具,另一种是使用数学公式进行计算。 6.2.2 资产相关性的进一步讨论由完全负相关的资产构造出无风险组合6.2.2 资产相关性的进一步讨论由完全正相关的资产构成的组合不能消除风险6.3 资本资产定价模型6.1 投资组合的风险与收益6.1.1 简单投资组合的计算6.1.2 组合中资产的相关性及比例6.1.3 特定风险与市场风险6.2 优化投资组合的原理6.2.1 有效前沿与最小方差组合6.2.2 资产相关性的进一步讨论6.3 资本资产定价模型6.3.1 投资组合中的无
7、风险资产6.3.2 Sharpe比率与市场组合6.3.3 资本资产定价模型(CAPM)6.3.4 3项资产组合的CAPM6.4 CAPM的意义与应用6.4.1 关于市场组合和无风险资产6.4.2 证券和投资组合的风险系数6.4.3 系数和SML的讨论6.3.1 投资组合中的无风险资产在风险资产组合中加入无风险资产6.3.1 投资组合中的无风险资产由A、B组成投资组合P,通过改变组合中A、B的投资比例,可以获得不同的组合P,然后再用这些不同的组合P来与无风险资产F进行组合,从而构成新的投资组合PF 。改变A、B组合P中A、B的比例,提高组合PF的风险收益线(图中的直线) ,直到它与A、B组合的风
8、险收益线(图中的双曲线)相切为止。这时得到的PF的风险收益线被称作资本市场线,它与A、B组合风险收益线的切点称为市场组合。通过引入无风险资产,可以获得一组具有最佳风险收益的新的投资组合,而这个新的组合的收益与风险之间具有简单的线性关系:市场组合M可以通过Sharpe比率(图中角的正切值)来确定。Sharpe比率 = 6.3.2 Sharpe比率与市场组合6.3.3 资本资产定价模型(CAPM)资本资产定价模型(证券市场线) :任意一个风险投资组合的预期收益率,等于该组合的风险系数乘以市场风险溢酬(MRP),而投资组合的风险系数等于该组合收益率相对于市场收益率的协方差除以市场收益率的方差。对于两
9、种风险资产构成的投资组合E(rP) = ArA + BrB 6.3.3 资本资产定价模型(CAPM)用CAPM计算投资组合的预期收益率 6.3.4 3项资产组合的CAPM三项资产的可能组合分布范围6.3.4 3项资产组合的CAPM计算最小方差组合。计算市场组合。计算任意市场组合的风险系数并验证CAPM。 6.3.4 3项资产组合的CAPM计算各种可能组合的风险系数并绘制证券市场线6.4 CAPM的意义与应用6.1 投资组合的风险与收益6.1.1 简单投资组合的计算6.1.2 组合中资产的相关性及比例6.1.3 特定风险与市场风险6.2 优化投资组合的原理6.2.1 有效前沿与最小方差组合6.2
10、.2 资产相关性的进一步讨论6.3 资本资产定价模型6.3.1 投资组合中的无风险资产6.3.2 Sharpe比率与市场组合6.3.3 资本资产定价模型(CAPM)6.3.4 3项资产组合的CAPM6.4 CAPM的意义与应用6.4.1 关于市场组合和无风险资产6.4.2 证券和投资组合的风险系数6.4.3 系数和SML的讨论6.4.1 关于市场组合和无风险资产确定CAPM公式的前提:用市场上的全部资产来确定所谓的市场组合M,确定无风险资产的收益率。通常用一些相对比较稳定而且有代表性、能够充分反映市场情况的指数如S&P500指数、DJIA指数。通常用短期国债作为无风险资产的代表。 6.4.2 证券和投资组合的风险系数计算某种证券或资产组合风险溢酬相对于市场
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB32/T 4691-2024封闭区域智能网联低速养护车作业安全管理规范
- Unit1-单元知识图谱课件
- 糖尿病护理五驾马车
- 2025年科技成果转化专项资金申请科技成果转化模式研究报告
- 2025年家具制造业个性化定制生产模式下的定制家具行业市场前景预测报告
- 九年级科学上册1.3用分解反应制取氧气
- 加重锡芯三股绳项目投资可行性研究分析报告(2024-2030版)
- 八年级上册几何复习-几种常见辅助线的做法
- DB32/T 4542-2023河网水功能区水环境容量核定技术规范
- 2025年数控弯管机项目投资分析及可行性报告
- 家具供货结算协议书
- 2025届湖南省邵阳市高三下学期第三次联考物理试卷(含答案)
- 2025年公证员资格考试全国范围真题及答案
- 叉车作业安全协议书
- 房屋解除转让协议书
- 小学生美术讲课课件
- 新闻采访考试试题及答案
- 2025年北京市西城区高三语文二模考试卷附答案解析
- JJF 2215-2025移动源排放颗粒物数量检测仪校准规范
- 选择性必修1 《当代国际政治与经济》(主观题答题模版)
- 河北单招试题及答案英语
评论
0/150
提交评论