




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五章:数 列 数列的概念与简单表示法1、按照一定顺序排列着的一列数成为数列,数列中每一个数叫做这个数列的项;2、如果数列的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式;注意:1)并不是所有数列都有通项公式,如果一个数列仅仅给出前面有限的几项,那么得到的通项公式或者递推公式并不是唯一的,只要符合这几项的公式都可以;2)有的数列的通项公式在形式上并不唯一;3)当不易直接发现规律时,可以拆分成若干部分的和差积商或充分挖掘题目条件求解;3、如果已知数列的第一项或(前n项),且任意一项与它的前一项(或前n项)间的关系可以用一个公式来表示,这个公式叫做这个数列的递推
2、公式;4、数列可以看做定义域为(或其子集)的函数,当自变量由小到大依次取值时对应的一列函数值,它的图像是一群孤立的点;5、数列的表示方法有:列举法、图示法、解析法(用通项公式表示)和递推法(用递推关系表示);数列的分类:(了解)按照数列的项数分:有穷数列、无穷数列。按照任何一项的绝对值是否不超过某一正数分:有界数列、无界数列。3)从函数角度考虑分:递增数列、递减数列、常数列、摆动数列。7、求通项公式的方法归纳:(掌握)(1)根据初始值以及递推公式的情况下,求数列的通项公式,常用的方法有:一是根据初始值归纳猜想数列的通项公式,然后再证明;二是利用递推法求解;(2)(重点掌握3),易考考点) 根据
3、前n项和与的关系求通项公式常用两种思路: 1)先求出,再利用公式求解;2)利用递推法,由公式将它转化为的递推式,再求;3)数列通项公式适合任何数列,这个关系是考查数列常见的知识点,应熟练掌握。 等差数列1、等差数列的定义:(掌握)如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,这个数列就叫等差数列,这个常数叫等差数列的公差,用表示;2、递推关系与通项公式:(掌握,易考)递推关系:;通项公式:;推 广:;变 式:;根据这两个式子可以联想到点所在直线的斜率特 征:即,即(k,m为常数) (k,m为常数)是数列成等差数列的充要条件;(熟练掌握,非常重要)3、等差中项:(易考考点,必须
4、掌握)若成等差数列,则称的等差中项,且;成等差数列是的充要条件。4、前n项和:(易考考点,必须掌握) ; 课本中推导该公式的方法是:倒序相加,必须理解掌握。变式:特征:,是数列成等差数列的充要条件。(熟练掌握,非常重要)5、等差数列的性质(易考考点,重点掌握)()(1)在等差数列中,从第2项起,每一项是与它相邻的两项的等差中项;(2)等差中项公式的变式:;(3)在等差数列中,相隔等距离的项组成的数列是等差数列。成等差数列;(4)等差数列中,对任意的,均有; 公差计算公式:(n1);(nm)(5)若,则,反之不成立!(6)若项数是偶数,设共有2n项,则:1)=;2)=; 若项数为奇数,设共有2n
5、-1项,则:1)=;2)=;6、判断或证明一个数列是等差数列的方法( 易考,掌握)(1)定义法:是等差数列;(2)中项法:是等差数列;(3)通项公式法:是等差数列;(4)前项和公式法:是等差数列;7、最值的求法:(常考,重点掌握)(1)若已知,可以用二次函数最值的求法();注意n只能取整数,若最值点不为整数,必须验证该小数左右两端整数,判断哪个点是最值点;(2)若已知,则求最值时,n的值()可如下确定: 当时,最大;当时,最小;8、在五个量中已知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的。已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减
6、少运算量,如三个数成等差数列时,除了设外,还可设;四个数成等差数列时,可设为; 等比数列1、定义:(掌握)如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,记为;2、递推关系与通项公式:(掌握,易考)递推关系:;通项公式:;通项推广:;3、等比中项:(掌握,易考)若三个数成等比数列,则称为的等比中项,且为注意:是三数成等比数列的必要而不充分条件;4、前项和公式:(掌握,易考)(熟练掌握课本上推导过程) 5、等比数列的重要性质:(熟记掌握易考) (1)反之不真! (2)第n项与第m项的关系:; (3)等比中项的变形:; (4)为等
7、比数列,则下标成等差数列的对应项成等比数列。 (5)设通项和为,则仍成等比数列。 6、等比数列的转化:(熟记掌握,易考) = 1 * GB3 是等差数列是等比数列; = 2 * GB3 是正项等比数列是等差数列; = 3 * GB3 既是等差数列又是等比数列是各项不为零的常数列。7、等比数列的判定法(熟记掌握,易考) = 1 * GB3 定义法: 为等比数列; = 2 * GB3 中项法: 为等比数列; = 3 * GB3 通项公式法:为等比数列; = 4 * GB3 前项和法:为等比数列。8、等比数列的单调性:当0,1或0,00,01或1时,为递减数列;0时,为摆动数列,不具有单调性;=1时
8、,为常数列。9、等比数列和等差数列一样,可知三求二,常用的设元技巧: 三数等比:设为或; 四数等比:设为10、“错位相减法”求和是解决由等差数列和等比数列的对应项的积组成的数列求和的常用方法。 数列的综合应用(一)数列通项公式的求法(掌握,常考)1、累加法形如 (n=2、3、4.) 且可求,则用累加法求。有时若不能直接用,可变形成这种形式,然后用这种方法求解。如:在数列中,=1, (n=2、3、4) ,求的通项公式2、累乘法形如 (n=2、3、4),且可求,则用累乘法求。有时若不能直接用,可变形成这种形式,然后用这种方法求解。如:在数列中,=1,求。3、构造等比数列法原数列既不等差,也不等比。
9、若把中每一项添上一个数或一个式子构成新数列,使之等比,从而求出。该法适用于递推式形如=或=或= 其中b、c为不相等的常数,为一次式。如:(06福建理22)已知数列满足=1,= (),求数列的通项公式。4、构造等差数列数列既不等差,也不等比,递推关系式形如,那么把两边同除以后,想法构造一个等差数列,从而间接求出。如:数列中,=5,且 (n=2、3、4),试求数列的通项公式。5、取倒数法有些关于通项的递推关系式变形后含有项,直接求相邻两项的关系很困难,但两边同除以后,相邻两项的倒数的关系容易求得,从而间接求出。如:已知数列,= , ,求=?6、利用公式求通项有些数列给出的前n项和与的关系式=,利用
10、该式写出,两式做差,再利用导出与的递推式,从而求出。如:(07重庆21题)已知各项均为正数的数列的前n项和为满足1且6= n 求的通项公式。7、重新构造新方程组求通项法有时数列和的通项以方程组的形式给出,要想求出与必须得重新构造关于和的方程组,然后解新方程组求得和。如:(07辽宁第21题):已知数列,满足=2,=1且(),求数列,的通项公式。(二)数列的求和(掌握,常考)1、利用基本的求和公式: 常用的数列求和公式:(熟记)等差数列求和公式:;等比数列求和公式:;1+2+n=;(如何推导?)=;(如何推导?)=;(如何推导?)2、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法
11、,这种方法主要用于求数列anbn的前n项和,其中 an 、 bn 分别是等差数列和等比数列.如:求和:3、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.如:求的值4、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.如:求数列n(n+1)(2n+1)的前n项和5、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。常见裂项:(1) (2)(3) (4)(5)(6)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电视设备智能生物药品电子商务技术考核试卷
- 生活的滋味初一语文作文
- 平凡的爱初三语文作文
- 河南省信阳市潢川县2023-2024学年七年级下学期期末教学质量监测数学试卷(含答案)
- 矿山环境监测与放射性污染治理考核试卷
- 桥梁工程的绿色施工评价考核试卷
- 浙江省湖州市2025年初中学业水平调研测评语文试题卷(含答案)
- 环境监测新技术与应用考核试卷
- 橡胶制品行业发展趋势与前沿技术考核试卷
- 毛皮服装生产过程中的生产数据统计分析与决策考核试卷
- 24秋国家开放大学《科学与技术》终结性考核大作业参考答案
- 《测试反应快慢》说课稿 -2023-2024学年科学二年级下册教科版
- 声带息肉课件教学课件
- 2024年考研政治复习要点解析
- Profinet(S523-FANUC)发那科通讯设置
- 2024至2030年中国尼龙66切片数据监测研究报告
- 人工智能概论课件完整版
- 渣土、余土运输服务方案(技术方案)
- 《早产儿第一年:从NICU到家庭照护完全指南》随笔
- 四川省成都市2024年小升初英语试卷(含答案)
- 2024ABB电机与发电机业务单元产品手册
评论
0/150
提交评论