北京市西城区第四十四2021-2022学年高三下学期第六次检测数学试卷含解析_第1页
北京市西城区第四十四2021-2022学年高三下学期第六次检测数学试卷含解析_第2页
北京市西城区第四十四2021-2022学年高三下学期第六次检测数学试卷含解析_第3页
北京市西城区第四十四2021-2022学年高三下学期第六次检测数学试卷含解析_第4页
北京市西城区第四十四2021-2022学年高三下学期第六次检测数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1甲乙两人有三个不同的学习小组, , 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A B C D2不等式的解集记为,有下面四个命题:;.其中的真命题是( )ABCD3已知正四面体的内切球体积为v,外

2、接球的体积为V,则( )A4B8C9D274关于函数,有下述三个结论:函数的一个周期为;函数在上单调递增;函数的值域为.其中所有正确结论的编号是( )ABCD5若的二项展开式中的系数是40,则正整数的值为( )A4B5C6D76给出下列三个命题:“”的否定;在中,“”是“”的充要条件;将函数的图象向左平移个单位长度,得到函数的图象其中假命题的个数是( )A0B1C2D37已知函数是定义域为的偶函数,且满足,当时,则函数在区间上零点的个数为( )A9B10C18D208若,则, , , 的大小关系为( )ABCD9已知直线是曲线的切线,则( )A或1B或2C或D或110音乐,是用声音来展现美,给

3、人以听觉上的享受,熔铸人们的美学趣味著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波下列函数中不能与函数构成乐音的是( )ABCD11在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是26.7,天狼星的星等是1.45,则太阳与天狼星的亮度的比值为( )A1010.1B10.1Clg10.1D1010.112我国古代数学著作九章算术有

4、如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( )(结果采取“只入不舍”的原则取整数,相关数据:,)ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数的极大值为_.14已知四棱锥,底面四边形为正方形,四棱锥的体积为,在该四棱锥内放置一球,则球体积的最大值为_15在中,角、所对的边分别为、,若,则的取值范围是_16二项式的展开式中所有项的二项式系数之和是64,则展开式中的常

5、数项为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.(1)求直线CM与平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)试判断直线MN与平面PAB的位置关系,并给出证明.18(12分)如图所示,已知平面,为等边三角形,为边上的中点,且.()求证:面;()求证:平面平面;()求该几何体的体积19(12分)如图,在中,角的对边分别为,且满足,线段的中点为.()求角的大小;()已知,求的大小.20(12分)在以ABCDEF为

6、顶点的五面体中,底面ABCD为菱形,ABC120,ABAEED2EF,EFAB,点G为CD中点,平面EAD平面ABCD.(1)证明:BDEG;(2)若三棱锥,求菱形ABCD的边长.21(12分)如图,已知抛物线:与圆: ()相交于, , ,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.22(10分)已知抛物线,焦点为,直线交抛物线于两点,交抛物线的准线于点,如图所示,当直线经过焦点时,点恰好是的中点,且.(1)求抛物线的方程;(2)点是原点,设直线的斜率分别是,当直线的纵截距为1时,有数列满足,设数列的前n项和为,已知存在正整数使得,求m的值.参考答案

7、一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.2A【解析】作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.3D【解析】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,

8、利用球的体积公式即可求解.【详解】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,则,设内切球的半径为,内切球的球心为,则,解得:;设外接球的半径为,外接球的球心为,则或,在中,由勾股定理得:,解得, 故选:D【点睛】本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.4C【解析】用周期函数的定义验证.当时,再利用单调性判断.根据平移变换,函数的值域等价于函数的值域,而,当时,再求值域.【详解】因为,故错误;当时,所以,所以在上单调递增,故正确;函数的值域等价于函数的值域,易知,故当时,故正确.故选:C.【点睛】本题考查三

9、角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.5B【解析】先化简的二项展开式中第项,然后直接求解即可【详解】的二项展开式中第项.令,则,(舍)或.【点睛】本题考查二项展开式问题,属于基础题6C【解析】结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.【详解】对于命题,因为,所以“”是真命题,故其否定是假命题,即是假命题;对于命题,充分性:中,若,则,由余弦函数的单调性可知,即,即可得到,即充分性成立;必要性:中,若,结合余弦函数的单调性可知,即,可得到,即必要性成立.故命题正确;对于命题,将函数的图象向左平移个单位长度,可得到的图象,即命题是假命题故假命

10、题有.故选:C【点睛】本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.7B【解析】由已知可得函数f(x)的周期与对称轴,函数F(x)f(x)在区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,作出函数f(x)与g(x)的图象如图,数形结合即可得到答案.【详解】函数F(x)f(x)在区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,由f(x)f (2x),得函数f(x)图象关于x1对称,f(x)为偶函数,取xx+2,可得f(x+2)f(x)f(x),得函数周期为2.又当x0,1时,f(x)x,且

11、f(x)为偶函数,当x1,0时,f(x)x,g(x),作出函数f(x)与g(x)的图象如图:由图可知,两函数图象共10个交点,即函数F(x)f(x)在区间上零点的个数为10.故选:B.【点睛】本题考查函数的零点与方程根的关系,考查数学转化思想方法与数形结合的解题思想方法,属于中档题.8D【解析】因为,所以,因为,所以,.综上;故选D.9D【解析】求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值.【详解】直线的斜率为,对于,令,解得,故切点为,代入直线方程得,解得或1.故选:D【点睛】本小题主要考查根据切线方程求参数,属于基础题.10C【解析】由基本音的谐波的定义可得,利用可

12、得,即可判断选项.【详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C【点睛】本题考查三角函数的周期与频率,考查理解分析能力.11A【解析】由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮度满足,令,.故选A.【点睛】本题以天文学问题为背景,考查考生的数学应用意识信息处理能力阅读理解能力以及指数对数运算.12C【解析】由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出【详解】由题意可得莞草与蒲草第n天的长度分别为 据题意得:, 解得2n12, n21故选:C【点睛】本题考查了等比数列的通项

13、公式与求和公式,考查了推理能力与计算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13【解析】对函数求导,根据函数单调性,即可容易求得函数的极大值.【详解】依题意,得.所以当时,;当时,.所以当时,函数有极大值.故答案为:.【点睛】本题考查利用导数研究函数的性质,考查运算求解能力以及化归转化思想,属基础题.14【解析】由题知,该四棱锥为正四棱锥,作出该正四棱锥的高和斜高,连接,则球心O必在的边上,设,由球与四棱锥的内切关系可知,设,用和表示四棱锥的体积,解得和的关系,进而表示出内切球的半径,并求出半径的最大值,进而求出球的体积的最大值.【详解】设,由球O内切于四棱锥可知,则,

14、球O的半径,当且仅当时,等号成立,此时.故答案为:.【点睛】本题考查了棱锥的体积问题,内切球问题,考查空间想象能力,属于较难的填空压轴题.15【解析】计算出角的取值范围,结合正弦定理可求得的取值范围.【详解】,则,所以,由正弦定理,.因此,的取值范围是.故答案为:.【点睛】本题主要考查了正弦定理,正弦函数图象和性质,考查了转化思想,属于基础题16【解析】由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项【详解】由题意,展开式通项为,由得,常数项为故答案为:【点睛】本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键三、解答题:共70分。解答应写出文字

15、说明、证明过程或演算步骤。17(1)(2)(3)直线平面,证明见解析【解析】取中点,连接,则,再由已知证明平面,以为坐标原点,分别以,所在直线为,轴建立空间直角坐标系,求出平面的一个法向量(1)求出的坐标,由与所成角的余弦值可得直线与平面所成角的正弦值;(2)求出平面的一个法向量,再由两平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐标,由,结合平面,可得直线平面【详解】底面是边长为2的菱形,为等边三角形取中点,连接,则,为等边三角形,又平面平面,且平面平面,平面以为坐标原点,分别以,所在直线为,轴建立空间直角坐标系则,1,0,0,设平面的一个法向量为由,取,得(1)证明:设直线与平

16、面所成角为,则,即直线与平面所成角的正弦值为;(2)设平面的一个法向量为,由,得二面角的余弦值为;(3),又平面,直线平面【点睛】本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题18()见解析; ()见解析; ().【解析】(I)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(II)利用,证得平面,从而得到平面,由此证得平面平面.(III)作交于点,易得面,利用棱锥的体积公式,计算出棱锥的体积.【详解】()取的中点,连接,则,故四边形为平行四边形.故.又面,平面,所以面.()为等边三角形,为

17、中点,所以.又,所以面.又,故面,所以面平面.()几何体是四棱锥,作交于点,即面,.【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,考查四棱锥体积的求法,考查空间想象能力,所以中档题.19();().【解析】()由正弦定理边化角,再结合转化即可求解;()可设,由,再由余弦定理解得,对中,由余弦定理有,通过勾股定理逆定理可得,进而得解【详解】()由正弦定理得.而.由以上两式得,即.由于,所以,又由于,得.()设,在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【点睛】本题考查正弦定理和余弦定理的综合运用,属于中档题20(1)详见解析;(2).【解析

18、】(1)取中点,连,可得,结合平面EAD平面ABCD,可证平面ABCD,进而有,再由底面是菱形可得,可得,可证得平面,即可证明结论;(2)设底面边长为,由EFAB,AB2EF,求出体积,建立的方程,即可求出结论.【详解】(1)取中点,连,底面ABCD为菱形,平面EAD平面ABCD,平面平面平面,平面平面,底面ABCD为菱形,为中点,平面,平面平面,;(2)设菱形ABCD的边长为,则,所以菱形ABCD的边长为.【点睛】本题考查线线垂直的证明和椎体的体积,注意空间中垂直关系之间的相互转化,体积问题要熟练应用等体积方法,属于中档题.21(1)(2)点的坐标为【解析】将抛物线方程与圆方程联立,消去得到关于的一元二次方程, 抛物线与圆有四个交点需满足关于的一元二次方程在上有两个不等的实数根,根据二次函数的有关性质即可得到关于的不等式组,解不等式即可.不妨设抛物线与圆的四个交点坐标为,据此可表示出直线、的方程,联立方程即可表示出点坐标,再根据等腰梯形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论