北京北师特学校2022年高考数学四模试卷含解析_第1页
北京北师特学校2022年高考数学四模试卷含解析_第2页
北京北师特学校2022年高考数学四模试卷含解析_第3页
北京北师特学校2022年高考数学四模试卷含解析_第4页
北京北师特学校2022年高考数学四模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个

2、到的概率是( )ABCD2已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是ABCD3已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是( )ABCD4中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是( )A2或B2或C或D或5甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( )A甲B乙C丙D丁6如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,则的

3、最大值为( )ABC2D7已知函数,若,对任意恒有,在区间上有且只有一个使,则的最大值为( )ABCD8执行如图所示的程序框图,输出的结果为( )ABCD9如图,在ABC中,点M是边BC的中点,将ABM沿着AM翻折成ABM,且点B不在平面AMC内,点P是线段BC上一点.若二面角P-AM-B与二面角P-AM-C的平面角相等,则直线AP经过ABC的( )A重心B垂心C内心D外心10下列函数中,既是偶函数又在区间上单调递增的是( )ABCD11如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为( )A BCD12已知无穷等比数列的公比为2,且,则( )ABCD二、填空题:本题共4

4、小题,每小题5分,共20分。13若变量,满足约束条件,则的最大值为_14已知复数,其中是虚数单位若的实部与虚部相等,则实数的值为_15设是公差不为0的等差数列的前项和,且,则_.16已知,满足,则的展开式中的系数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在四棱锥中,是等边三角形,点在棱上,平面平面(1)求证:平面平面;(2)若,求直线与平面所成角的正弦值的最大值;(3)设直线与平面相交于点,若,求的值18(12分)如图所示,四棱柱中,底面为梯形,.(1)求证:;(2)若平面平面,求二面角的余弦值.19(12分)已知函数,()求的最小正周期;()求在上的最

5、小值和最大值20(12分)在中,角的对边分别为,且.(1)求角的大小;(2)已知外接圆半径,求的周长.21(12分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.22(10分)已知函数()(1)函数在点处的切线方程为,求函数的极值;(2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【详解】甲、乙、丙三人相约到

6、达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是. 故选:D【点睛】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.2B【解析】此题画出正方体模型即可快速判断m的取值.【详解】如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图(3)恰好有6个点到平面的距离为.所以本题答案为B.【点睛】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.3A【解析】由题知,利用求出,

7、再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以 的周期为, 则, 所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.4A【解析】根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率【详解】设双曲线C的渐近线方程为y=kx,是圆的切线得: ,得双曲线的一条渐近线的方程为 焦点在x、y轴上两种情况讨论:当焦点在x轴上时有: 当焦点在y轴上时有: 求得双曲线的离心率 2

8、或故选:A【点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想解题的关键是:由圆的切线求得直线 的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值此题易忽视两解得出错误答案5C【解析】分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说

9、的是真话,故乙说谎,年纪最大的也不是乙;假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.6C【解析】建立坐标系,写出相应的点坐标,得到的表

10、达式,进而得到最大值.【详解】以D点为原点,BC所在直线为x轴,AD所在直线为y轴,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆;根据三角形面积公式得到,可得到内切圆的半径为 可得到点的坐标为: 故得到 故得到 , 故最大值为:2.故答案为C.【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.7C【解析】根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对

11、应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【详解】由题意知,则其中,又在上有且只有一个最大值,所以,得,即,所以,又,因此当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当时,成立;综上所得的最大值为故选:C【点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.8D【解析】由程序框图确定程序功能后可得出结论【详解】执行该程序可得故选:D【点睛】本题考查程序框图解题可模拟程序运行,观察变量值的变化,然后可得结论

12、,也可以由程序框图确定程序功能,然后求解9A【解析】根据题意P到两个平面的距离相等,根据等体积法得到SPBM=SPCM,得到答案.【详解】二面角P-AM-B与二面角P-AM-C的平面角相等,故P到两个平面的距离相等.故VP-ABM=VP-ACM,即VA-PBM=VA-PCM,两三棱锥高相等,故SPBM=SPCM,故BP=CP,故P为CB中点.故选:A.【点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.10C【解析】结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符

13、合题意;D:为非奇非偶函数,不符合题意.故选:C.【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.11C【解析】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.12A【解析】依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。【详解】因为无穷等比数列的公比为2,则无穷等比数列的公比为。由有,解得,所以,故选A。【点睛】本题主要考查无穷等比数

14、列求和公式的应用。二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据约束条件可以画出可行域,从而将问题转化为直线在轴截距最大的问题的求解,通过数形结合的方式可确定过时,取最大值,代入可求得结果.【详解】由约束条件可得可行域如下图阴影部分所示: 将化为,则最大时,直线在轴截距最大;由直线平移可知,当过时,在轴截距最大,由得:,.故答案为:.【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在轴截距的最值的求解问题,通过数形结合的方式可求得结果.14【解析】直接由复数代数形式的乘法运算化简,结合已知条件即可求出实数的值.【详解】解:的实部与虚部相等,所以,计算得出.

15、故答案为:【点睛】本题考查复数的乘法运算和复数的概念,属于基础题.1518【解析】先由,可得,再结合等差数列的前项和公式求解即可.【详解】解:因为,所以,.故答案为:18.【点睛】本题考查了等差数列基本量的运算,重点考查了等差数列的前项和公式,属基础题.161【解析】根据二项式定理求出,然后再由二项式定理或多项式的乘法法则结合组合的知识求得系数【详解】由题意,的展开式中的系数为故答案为:1【点睛】本题考查二项式定理,掌握二项式定理的应用是解题关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析(2)(3)【解析】(1)取中点为,连接,由等边三角形性质可得,再由

16、面面垂直的性质可得,根据平行直线的性质可得,进而求证;(2)以为原点,过作的平行线,分别以,分别为轴,轴,轴建立空间直角坐标系,设,由点在棱上,可设,即可得到,再求得平面的法向量,进而利用数量积求解;(3)设,则,求得,即可求得点的坐标,再由与平面的法向量垂直,进而求解.【详解】(1)证明:取中点为,连接,因为是等边三角形,所以,因为且相交于,所以平面,所以,因为,所以,因为,在平面内,所以,所以.(2)以为原点,过作的平行线,分别以,分别为轴,轴,轴建立空间直角坐标系,设,则,因为在棱上,可设,所以,设平面的法向量为,因为,所以,即,令,可得,即,设直线与平面所成角为,所以,可知当时,取最大

17、值.(3)设,则有,得,设,那么,所以,所以.因为,所以.又因为,所以,设平面的法向量为,则,即,可得,即 因为在平面内,所以,所以,所以,即,所以或者(舍),即.【点睛】本题考查面面垂直的证明,考查空间向量法求线面成角,考查运算能力与空间想象能力.18(1)证明见解析(2)【解析】(1)取中点为,连接,根据线段关系可证明为等边三角形,即可得;由为等边三角形,可得,从而由线面垂直判断定理可证明平面,即可证明.(2)以为原点,为,轴建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【详解】(1)证明:取中点为,连接,如下图所示:因为,所以,故为等边

18、三角形,则.连接,因为,所以为等边三角形,则.又,所以平面.因为平面,所以.(2)由(1)知,因为平面平面,平面,所以平面,以为原点,为,轴建立如图所示的空间直角坐标系,易求,则,则,.设平面的法向量,则即令,则,故.设平面的法向量,则则令,则,故,所以.由图可知,二面角为钝二面角角,所以二面角的余弦值为.【点睛】本题考查线面垂直的判定,由线面垂直判定线线垂直,由空间向量法求平面与平面形成二面角的大小,属于中档题.19();()最小值和最大值【解析】试题分析:(1)由已知利用两角和与差的三角函数公式及倍角公式将的解析式化为一个复合角的三角函数式,再利用正弦型函数的最小正周期计算公式,即可求得函数的最小正周期;(2)由(1)得函数,分析它在闭区间上的单调性,可知函数在区间上是减函数,在区间上是增函数,由此即可求得函数在闭区间上的最大值和最小值也可以利用整体思想求函数在闭区间上的最大值和最小值由已知,有的最小正周期(2)在区间上是减函数,在区间上是增函数,函数在闭区间上的最大值为,最小值为考点:1两角和与差的正弦公式、二倍角的正弦与余弦公式;2三角函数的周期性和单调性20(1)(2)3+3【解析】(1)利用余弦的二倍角公式和同角三角函数关系式化简整理并结合范围0A,可求A的值(2)由正弦定理可求a,利用余弦定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论