北京市昌平区2022年高考全国统考预测密卷数学试卷含解析_第1页
北京市昌平区2022年高考全国统考预测密卷数学试卷含解析_第2页
北京市昌平区2022年高考全国统考预测密卷数学试卷含解析_第3页
北京市昌平区2022年高考全国统考预测密卷数学试卷含解析_第4页
北京市昌平区2022年高考全国统考预测密卷数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1一艘海轮从A处出发,以每小时24海里的速度沿南偏东40的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70,在B处观察灯塔,其方向是北偏东65

2、,那么B,C两点间的距离是( )A6 海里B6海里C8海里D8海里2若非零实数、满足,则下列式子一定正确的是( )ABCD3在中,点满足,则等于( )A10B9C8D74小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于( )ABCD5函数满足对任意都有成立,且函数的图象关于点对称,则的值为( )A0B2C4D16是边长为的等边三角形,、分别为、的中点,沿把折起,使点翻折到点的位置,连接、,当四棱锥的外接球的表面积最小时

3、,四棱锥的体积为( )ABCD7已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点( )A先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变8已知双曲线:(,)的右焦点与圆:的圆心重合,且圆被双曲线的一条渐近线截得的弦长为,则双曲线的离心率为( )A2BCD39圆心为且和轴相切的圆的方程是( )ABCD10袋中装有标号为1,2,3,4,

4、5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( )ABCD11执行如图所示的程序框图,若输入的,则输出的( )A9B31C15D6312设点,不共线,则“”是“”( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分又不必要条件二、填空题:本题共4小题,每小题5分,共20分。13已知函数,则下列结论中正确的是_.是周期函数;的对称轴方程为,;在区间上为增函数;方程在区间有6个根.14高三(1)班共有56人,学号依次为1,2,3,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为

5、6,34,48的同学在样本中,那么还有一个同学的学号应为 15一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可能性相等,则取出的3个小球中数字最大的为4的概率是_16已知(为虚数单位),则复数_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在中,点在线段上.(1)若,求的长;(2)若,求的面积.18(12分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况现分别从、三块试验田中各随机抽取株植物测量高度,数据如下

6、表(单位:厘米): 组组组假设所有植株的生长情况相互独立从、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记为从、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、(单位:厘米)这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小(结论不要求证明)19(12分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.20(12分)已知椭圆的右焦点为,离心率为.(1)若,求椭圆的方程;(2)设直线与椭圆相交于、两点,、分别为线段、的中点,

7、若坐标原点在以为直径的圆上,且,求的取值范围.21(12分)已知数列是等差数列,前项和为,且,(1)求(2)设,求数列的前项和22(10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点,直线l与曲线C交于不同的两点A、B,求的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】先根据给的条件求出三角形ABC的三个内角,再结合AB可求,应用正弦定理即可求解.【详解】由题意可知:BA

8、C704030.ACD110,ACB1106545,ABC1803045105.又AB240.512.在ABC中,由正弦定理得,即,.故选:A.【点睛】本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.2C【解析】令,则,将指数式化成对数式得、后,然后取绝对值作差比较可得【详解】令,则,因此,.故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题3D【解析】利用已知条件,表示出向量 ,然后求解向量的数量积【详解】在中,点满足,可得 则=【点睛】本题考查了向量的数量积运算,关键是利用

9、基向量表示所求向量4D【解析】这是几何概型,画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.5C【解析】根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【详解】因为函数的图象关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【点睛】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.6D【解析】首先由题意得,当梯形的外接圆圆心为四棱锥的外接球球心时,外

10、接球的半径最小,通过图形发现,的中点即为梯形的外接圆圆心,也即四棱锥的外接球球心,则可得到,进而可根据四棱锥的体积公式求出体积.【详解】如图,四边形为等腰梯形,则其必有外接圆,设为梯形的外接圆圆心,当也为四棱锥的外接球球心时,外接球的半径最小,也就使得外接球的表面积最小,过作的垂线交于点,交于点,连接,点必在上,、分别为、的中点,则必有,即为直角三角形.对于等腰梯形,如图:因为是等边三角形,、分别为、的中点,必有,所以点为等腰梯形的外接圆圆心,即点与点重合,如图,所以四棱锥底面的高为,.故选:D.【点睛】本题考查四棱锥的外接球及体积问题,关键是要找到外接球球心的位置,这个是一个难点,考查了学生

11、空间想象能力和分析能力,是一道难度较大的题目.7D【解析】由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【详解】由函数的图象关于直线对称,得,即,解得,所以,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D【点睛】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题8A【解析】由已知,圆心M到渐近线的距离为,可得,又,解方程即可.【详解】由已知,渐近线方程为,因为圆被双曲线的一条渐近线截得的弦长为,所以圆心M到渐近线的距离为,故,所以离心率为.故选:A.【点睛】本题考查双曲线离心率的问题,涉及到直线与

12、圆的位置关系,考查学生的运算能力,是一道容易题.9A【解析】求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【点睛】本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.10C【解析】先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果【详解】从6个球中摸出2个,共有种结果,两个球的号码之和是3的倍数,共有摸一次中奖的概率是,5个人摸奖,相当于发生5次试验,且每一次发生的概率是,有5人参与摸奖,恰好有2人获奖的概率是,故选:【点睛】本题主要考查了次独立重复

13、试验中恰好发生次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题11B【解析】根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果.【详解】执行程序框;,满足,退出循环,因此输出,故选:B.【点睛】本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题.12C【解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.二、

14、填空题:本题共4小题,每小题5分,共20分。13【解析】由函数,对选项逐个验证即得答案.【详解】函数,是周期函数,最小正周期为,故正确;当或时,有最大值或最小值,此时或,即或,即.的对称轴方程为,故正确;当时,此时在上单调递减,在上单调递增,在区间上不是增函数,故错误;作出函数的部分图象,如图所示方程在区间有6个根,故正确.故答案为:.【点睛】本题考查三角恒等变换,考查三角函数的性质,属于中档题.1420【解析】根据系统抽样的定义将56人按顺序分成4组,每组14人,则1至14号为第一组,15至28号为第二组,29号至42号为第三组,43号至56号为第四组.而学号6,34,48分别是第一、三、四

15、组的学号,所以还有一个同学应该是15+6-1=20号,故答案为20.15【解析】由题,得满足题目要求的情况有,有一个数字4,另外两个数字从1,2,3里面选和有两个数字4,另外一个数字从1,2,3里面选,由此即可得到本题答案.【详解】满足题目要求的情况可以分成2大类:有一个数字4,另外两个数字从1,2,3里面选,一共有种情况;有两个数字4,另外一个数字从1,2,3里面选,一共有种情况,又从中任意摸取3个小球,有种情况,所以取出的3个小球中数字最大的为4的概率.故答案为:【点睛】本题主要考查古典概型与组合的综合问题,考查学生分析问题和解决问题的能力.16【解析】解:故答案为:【点睛】本题考查复数代

16、数形式的乘除运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】(1)先根据平方关系求出,再根据正弦定理即可求出;(2)分别在和中,根据正弦定理列出两个等式,两式相除,利用题目条件即可求出,再根据余弦定理求出,即可根据求出的面积【详解】(1)由,得,所以.由正弦定理得,即,得.(2)由正弦定理,在中,在中,又,由得,由余弦定理得,即,解得,所以的面积.【点睛】本题主要考查正余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于基础题18(1);(2);(3)【解析】设事件为“甲是组的第株植物”,事件为“乙是组的

17、第株植物”,事件为“丙是组的第株植物”,、,可得出.(1)设事件为“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得结果;(2)设事件为“甲的高度大于乙的高度”,列举出符合题意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根据题意直接判断和的大小即可.【详解】设事件为“甲是组的第株植物”,事件为“乙是组的第株植物”,事件为“丙是组的第株植物”,、由题意可知,、(1)设事件为“丙的高度小于厘米”,由题意知,又与互斥,所以事件的概率;(2)设事件为“甲的高度大于乙的高度”由题意知所以事件的概率;(3).【点睛】本题考查概率的求法,考查互斥事件加法公式、相互独立事

18、件概率乘法公式等基础知识,考查运算求解能力,是中等题19(1);(2)【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.详解:(1)当时,即故不等式的解集为(2)当时成立等价于当时成立若,则当时;若,的解集为,所以,故综上,的取值范围为点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.20(1);(2).【解析】(1)由椭圆的离心率求出、的值,由此可求得椭圆的方程;(2)设点、,联立直线与椭圆的方程,列出韦达定理,由题意得出,可得出,【详解】(1)由题意得,.又因为,所以椭圆的方程为;(2)由,得.设、,所以,依题意,易知,四边形为平行四边形,所以.因为,所以.即,将其整理为.因为,所以,.所以,即.【点睛】本题考查椭圆方程的求法和直线与椭圆位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论