版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若的展开式中的常数项为-12,则实数的值为( )A-2B-3C2D32已知实数x,y满足约束条件,若的最大值为2,则实数k的值为( )A1BC2D3已知集合,定义集合,则等于( )ABCD4设命题:,则为A,B,C,D,5已知直线:与椭
2、圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为( )ABCD62019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A96B84C120D3607已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是( )ABCD8已知l,m是两条不同的直线,m平面,则“”是“lm”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件9在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测甲:我的成绩比乙高乙:丙的成绩比我和甲的都高丙:我的成绩比乙
3、高成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A甲、乙、丙B乙、甲、丙C丙、乙、甲D甲、丙、乙10设函数在定义城内可导,的图象如图所示,则导函数的图象可能为( )ABCD11已知向量,满足,在上投影为,则的最小值为( )ABCD12已知数列 中, ,若对于任意的,不等式恒成立,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知中,点是边的中点,的面积为,则线段的取值范围是_.14已知随机变量服从正态分布,若,则_.15从甲、乙、丙、丁、戊五人中任选两名代表,甲被选中的概率为_.16设为互不相等的正实数,随机变量和的分布列
4、如下表,若记,分别为的方差,则_(填,【解析】根据方差计算公式,计算出的表达式,由此利用差比较法,比较出两者的大小关系.【详解】,故.,.要比较的大小,只需比较与,两者作差并化简得,由于为互不相等的正实数,故,也即,也即.故答案为:【点睛】本小题主要考查随机变量期望和方差的计算,考查差比较法比较大小,考查运算求解能力,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()详见解析;().【解析】()由余弦定理解得,即可得到,由面面垂直的性质可得平面,即可得到,从而得证;()在平面中,过点作于点,则平面,如图所示建立空间直角坐标系,设,其中,利用空间向量法得到二面角的余
5、弦,即可得到的关系,从而得解;【详解】解:()证明:在中,解得,则,从而因为平面平面,平面平面所以平面,又因为平面,所以,因为,平面,平面,所以平面;() 解:在平面中,过点作于点,则平面,如图所示建立空间直角坐标系,设,其中,则设平面的法向量为,则,即,令,则又平面的一个法向量,则从而,故则直线与平面所成的角为,大小为.【点睛】本题考查线面垂直的判定,面面垂直的性质定理的应用,利用空间向量法解决立体几何问题,属于中档题.18(1)(2)11【解析】(1)利用二倍角公式将式子化简成,再利用两角和与差的余弦公式即可求解.(2)利用余弦定理可得,再将平方,利用向量数量积可得,从而可求周长.【详解】
6、由题 解得,所以由余弦定理,再由解得:所以故的周长为【点睛】本题主要考查了余弦定理解三角形、两角和与差的余弦公式、需熟记公式,属于基础题.19(1),(2)存在,【解析】(1)先求得曲线的普通方程,利用伸缩变换的知识求得曲线的直角坐标方程,再转化为极坐标方程.根据极坐标和直角坐标转化公式,求得直线的直角坐标方程.(2)求得曲线的圆心和半径,计算出圆心到直线的距离,结合图像判断出存在符合题意,并求得的值.【详解】(1)曲线的普通方程为,纵坐标伸长到原来的2倍,得到曲线的直角坐标方程为,其极坐标方程为,直线的直角坐标方程为.(2)曲线是以为圆心,为半径的圆,圆心到直线的距离.由图像可知,存在这样的
7、点,则,且点到直线的距离,.【点睛】本小题主要考查坐标变换,考查直线和圆的位置关系,考查极坐标方程和直角坐标方程相互转化,考查参数方程化为普通方程,考查数形结合的数学思想方法,属于中档题.20(1)y26x(2)【解析】(1)根据抛物线定义,写出焦点坐标和准线方程,列方程即可得解;(2)根据中点坐标表示出|AB|和点到直线的距离,得出面积,利用均值不等式求解最大值.【详解】(1)抛物线E:y22px(p0),焦点F(,0)到准线x的距离为3,可得p3,即有抛物线方程为y26x;(2)设线段AB的中点为M(x0,y0),则,y0,kAB,则线段AB的垂直平分线方程为yy0(x2),可得x5,y0
8、是的一个解,所以AB的垂直平分线与x轴的交点C为定点,且点C(5,0),由可得直线AB的方程为yy0(x2),即x(yy0)+2 代入y26x可得y22y0(yy0)+12,即y22y0y+2y020 ,由题意y1,y2是方程的两个实根,且y1y2,所以1y021(2y0212)1y02+180,解得2y02,|AB|,又C(5,0)到线段AB的距离h|CM|,所以SABC|AB|h,当且仅当9+y02212y02,即y0,A(,),B(,),或A(,),B(,)时等号成立,所以SABC的最大值为【点睛】此题考查根据焦点和准线关系求抛物线方程,根据直线与抛物线位置关系求解三角形面积的最值,表示
9、三角形的面积关系常涉及韦达定理整体代入,抛物线中需要考虑设点坐标的技巧,处理最值问题常用函数单调性求解或均值不等式求最值.21(1),表示以为圆心为半径的圆;为抛物线;(2)【解析】(1)消去参数的直角坐标方程,利用,即得的直角坐标方程;(2)由直线与抛物线相切,求导可得切线斜率,再由直线与圆相切,故切线与圆心与切点连线垂直,可求解得到切点坐标,即得解.【详解】(1)消去参数的直角坐标方程为:.的极坐标方程.,.当时表示以为圆心为半径的圆;为抛物线.(2)设切点为,由于,则切线斜率为,由于直线与圆相切,故切线与圆心与切点连线垂直,故有,直线的直角坐标方程为,所以的极坐标方程为.【点睛】本题考查了极坐标,参数方程综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.22(1)曲线:,直线的直角坐标方程;(2)1.【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游服务合同风险防控
- 合同权利义务变更
- 招标空气压缩机设备采购
- 数据处理服务采购合同
- 完善条款造价咨询合同补充
- 主体钢结构施工劳务分包合同
- 招标文件会签操作指南
- 组合贷款借款合同的履行解除
- 房屋买卖合同简约版示例
- 暖通工程劳务分包合同样本
- 进料加工业务操作流程
- 2024年秸秆收储合同4
- 驾照考试题库及答案
- 导管相关血流感染预防与控制技术指南课件
- Unit 7 Section A(1a-1c)表格式教案 人教版英语七年级下册
- JBT 11699-2013 高处作业吊篮安装、拆卸、使用技术规程
- MOOC 单片机原理与应用实例仿真-河南理工大学 中国大学慕课答案
- 2024年全国版图知识竞赛(小学组)考试题库大全(含答案)
- 拟建建筑物地质差异较大时的地基处理措施
- 2024年福建泉州永春县永源城市建设有限公司招聘笔试参考题库附带答案详解
- 钢制汽车零件感应淬火金相检验
评论
0/150
提交评论