安徽省芜湖市普通高中2022年高考数学必刷试卷含解析_第1页
安徽省芜湖市普通高中2022年高考数学必刷试卷含解析_第2页
安徽省芜湖市普通高中2022年高考数学必刷试卷含解析_第3页
安徽省芜湖市普通高中2022年高考数学必刷试卷含解析_第4页
安徽省芜湖市普通高中2022年高考数学必刷试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数f(x)sin2x+sin2(x),则f(x)的最小值为( )ABCD2下图所示函数图象经过何种变换可以得到的图象( )A向左平移个单位B向右平移个单位C向左平移个单位D向右

2、平移个单位3如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )ABC6D与点O的位置有关4将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( )A14种B15种C16种D18种5要得到函数的图象,只需将函数的图象上所有点的( )A横坐标缩短到原来的(纵坐标不变),再向左平移个单位长度B横坐标缩短到原来的(纵坐标不变),再向右平移个单位长度C横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位长度D横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度6要得到函数的图象,只需将函数图象上所

3、有点的横坐标( )A伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度B伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移个单位长度C缩短到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度D缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度7集合中含有的元素个数为( )A4B6C8D128已知水平放置的ABC是按“斜二测画法”得到如图所示的直观图,其中BOCO1,AO,那么原ABC的面积是()AB2CD9点为不等式组所表示的平面区域上的动点,则的取值范围是( )ABCD10设,是两条不同的直线,是两个不同的平面,下列命题中正确的是( )A若,则B若,则C若

4、,则D若,则11设等差数列的前n项和为,且,则( )A9B12CD12函数的最大值为,最小正周期为,则有序数对为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设, ,则的面积为_.14如图,半圆的直径AB6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值为 .15若函数,则_;_.16的展开式中,的系数是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,角所对的边分别是,且.(1)求;(2)若,求.18(12分)已知椭圆,左、右焦点为,

5、点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.19(12分)已知函数,且(1)若,求的最小值,并求此时的值;(2)若,求证:20(12分)设数列是公差不为零的等差数列,其前项和为,若,成等比数列(1)求及;(2)设,设数列的前项和,证明:21(12分)已知函数(1)若,不等式的解集;(2)若,求实数的取值范围.22(10分)在直角坐标系中,已知点,若以线段为直径的圆与轴相切.(1)求点的轨迹的方程;(2)若上存在两动点(A,B在轴异侧)满足,且的周长为,求的值.参考答案一、选择题:本题共12小题,每小题5分,共

6、60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】先通过降幂公式和辅助角法将函数转化为,再求最值.【详解】已知函数f(x)sin2x+sin2(x),=,=,因为,所以f(x)的最小值为.故选:A【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.2D【解析】根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.【详解】设函数解析式为,根据图像:,故,即,取,得到,函数向右平移个单位得到.故选:.【点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.3B【解析】根据三视图还原直观图

7、如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.4D【解析】采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起【详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将

8、红球插入6个球组成的7个空中即可,因此共有27=14种;情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种.综上所述,共有14+4=18种.故选:D【点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题5C【解析】根据三角函数图像的变换与参数之间的关系,即可容易求得.【详解】为得到,将横坐标伸长到原来的2倍(纵坐标不变),故可得;再将 向左平移个单位长度,故可得.故选:C.【点睛】本题考查三角函数图像的平移,涉及诱导公式的使用,属基础题.6B【解析】分析:根据三角函数的图

9、象关系进行判断即可详解:将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到 再将得到的图象向左平移个单位长度得到 故选B点睛:本题主要考查三角函数的图象变换,结合和的关系是解决本题的关键7B【解析】解:因为集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B8A【解析】先根据已知求出原ABC的高为AO,再求原ABC的面积.【详解】由题图可知原ABC的高为AO,SABCBCOA2,故答案为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.9B【解析】作出不等式对应的平面区域,利用线性规划的知识,利用

10、的几何意义即可得到结论【详解】不等式组作出可行域如图:,的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,则的取值范围是:,故选:【点睛】本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键10D【解析】试题分析:,,故选D.考点:点线面的位置关系.11A【解析】由,可得以及,而,代入即可得到答案.【详解】设公差为d,则解得,所以.故选:A.【点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.12B【解析】函数(为辅助角)函数的最大值为,最小正周期为故选B二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据个全等的三角形,得

11、到,设,求得,利用余弦定理求得,再利用三角形的面积公式,求得三角形的面积.【详解】由于三角形是由个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,所以.在三角形中,.设,则.由余弦定理得,解得.所以三角形边长为,面积为.故答案为:【点睛】本题考查了等边三角形的面积计算公式、余弦定理、全等三角形的性质,考查了推理能力与计算能力,属于中档题14.【解析】.150 1 【解析】根据分段函数解析式,代入即可求解.【详解】函数,所以,.故答案为:0;1.【点睛】本题考查了分段函数求值的简单应用,属于基础题.16【解析】先将原式展开成,发现中不含,故只研究后面一项即可得解.【详解】,依题意,只

12、需求中的系数,是.故答案为:-40【点睛】本题考查二项式定理性质,关键是先展开再利用排列组合思想解决,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】(1)根据正弦定理到,得到答案.(2)计算,再利用余弦定理计算得到答案.【详解】(1)由,可得,因为,所以,所以.(2),又因为,所以.因为,所以,即.【点睛】本题考查了正弦定理和余弦定理,意在考查学生的计算能力.18(1)(2)存在;详见解析【解析】(1)由椭圆的性质得,解得后可得,从而得椭圆方程;(2)设,当直线斜率存在时,设为,代入椭圆方程,整理后应用韦达定理得,代入0由恒成立问题可求得验证

13、斜率不存在时也适合即得【详解】解:(1)由题易知解得,所以椭圆方程为(2)设当直线斜率存在时,设为与椭圆方程联立得,显然所以因为化简解得即所以此时存在定点满足题意当直线斜率不存在时,显然也满足综上所述,存在定点,使成立【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题中的定点问题,解题方法是设而不求的思想方法设而不求思想方法是直线与圆锥曲线相交问题中常用方法,只要涉及交点坐标,一般就用此法19(1)最小值为,此时;(2)见解析【解析】(1)由已知得,法一:,根据二次函数的最值可求得;法二:运用基本不等式构造,可得最值;法三:运用柯西不等式得:,可得最值;(2)由绝对值不等式得,又,可得证

14、.【详解】(1),法一:,的最小值为,此时;法二:,即的最小值为,此时;法三:由柯西不等式得:,,即的最小值为,此时;(2),又,.【点睛】本题考查运用基本不等式,柯西不等式,绝对值不等式进行不等式的证明和求解函数的最值,属于中档题.20(1),;(2)证明见解析.【解析】(1)根据题中条件求出等差数列的首项和公差,然后根据首项和公差即可求出数列的通项和前项和;(2)根据裂项求和求出,根据的表达式即可证明.【详解】(1)设的公差为,由题意有,且,所以,;(2)因为,所以,.【点睛】本题主要考查了等差数列基本量的求解,裂项求和法,属于基础题.21(1)(2)【解析】(1)依题意可得,再用零点分段

15、法分类讨论可得;(2)依题意可得对恒成立,根据绝对值的几何意义将绝对值去掉,分别求出解集,则两解集的并集为,得到不等式即可解得;【详解】解:(1)若,则,即,当时,原不等式等价于,解得当时,原不等式等价于,解得,所以;当时,原不等式等价于,解得;综上,原不等式的解集为;(2)即,得或,由解得,由解得,要使得的解集为,则解得,故的取值范围是.【点睛】本题考查绝对值不等式的解法,着重考查等价转化思想与分类讨论思想的综合应用,属于中档题22(1);(2)【解析】(1)设,则由题设条件可得,化简后可得轨迹的方程.(2)设直线,联立直线方程和抛物线方程后利用韦达定理化简并求得,结合焦半径公式及弦长公式可求的值及的长.【详解】(1)设,则圆心的坐标为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论