版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知向量,若,则实数的值为( )ABCD2设为锐角,若,则的值为( )AB C D3已知的部分图象如图所示,则的表达式是( )ABCD4已知集合A=x|y=lg(4x2),B=y|y=3x,x0时,AB=( )Ax|x2 Bx|1x2 Cx|
2、1x2 D5已知是函数的极大值点,则的取值范围是ABCD6ABC的内角A,B,C的对边分别为,已知,则为( )ABC或D或7已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是( )ABCD8设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1cm,则其体重约增加0.85kgD若该大学某女生身高为170cm,则可断定其体重比为58.79kg9函数y=si
3、n2x的图象可能是ABCD10已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,则当时,的最大值是( )A8B9C10D1111在展开式中的常数项为A1B2C3D712已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则( )A30B45C60D75二、填空题:本题共4小题,每小题5分,共20分。13记为数列的前项和.若,则_.14已知,则=_,_15已知,满足不等式组,则的取值范围为_16在矩形中,为的中点,将和分别沿,翻折,使点与重合于点.若,则三棱锥的外接球的表面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已
4、知函数.(1)若,求不等式的解集;(2)若“,”为假命题,求的取值范围.18(12分)在中,角的对边分别为.已知,.(1)若,求;(2)求的面积的最大值.19(12分)已知曲线:和:(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)求曲线的直角坐标方程和的方程化为极坐标方程;(2)设与,轴交于,两点,且线段的中点为.若射线与,交于,两点,求,两点间的距离.20(12分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.21(12分)在平面直角坐标系中,以原点为极点,x
5、轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位已知曲线C的极坐标方程为2cos ,直线l的参数方程为 (t为参数,为直线的倾斜角)(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)若直线l与曲线C有唯一的公共点,求角的大小22(10分)已知数列的前项和为,且满足(1)求数列的通项公式;(2)若,且数列前项和为,求的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值.【详解】解:,即,将和代入,得出,所以.故选:D.【点睛】本题考查了向量
6、的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.2D【解析】用诱导公式和二倍角公式计算【详解】故选:D【点睛】本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系3D【解析】由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,则,因此,.故选:D.【点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.4B【解析】试题分
7、析:由集合A中的函数y=lg(4-x2),得到4-x20,解得:-2x2,集合A=x|-2x0,得到y1,集合B=y|y1,则AB=x|1x2,故选B考点:交集及其运算5B【解析】方法一:令,则,当,时,单调递减,时,且,即在上单调递增,时,且,即在上单调递减,是函数的极大值点,满足题意;当时,存在使得,即,又在上单调递减,时,所以,这与是函数的极大值点矛盾综上,故选B方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,即;在的右侧附近,即易知,时,与相切于原点,所以根据与的图象关系,可得,故选B6D【解析】由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解
8、得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.7D【解析】根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可.【详解】对于A,当,时,则平面与平面可能相交,故不能作为的充分条件,故A错误;对于B,当,时,则,故不能作为的充分条件,故B错误;对于C,当,时,则平面与平面相交,故不能作为的充分条件,故C错误;对于D,当,则一定能得到,故D正确.故选:D.【点睛】本题考查了面面垂直的判断问题,属于基础题.8D【解析】根据y与x的线性回归方程为 y=0.85x85.71,则=0.850,y 与 x 具有正的线性相关关系,A正确;回归直
9、线过样本点的中心(),B正确;该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确;该大学某女生身高为 170cm,预测其体重约为0.8517085.71=58.79kg,D错误故选D9D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令, 因为,所以为奇函数,排除选项A,B;因为时,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环
10、往复10B【解析】根据题意计算,解不等式得到答案.【详解】是以1为首项,2为公差的等差数列,.是以1为首项,2为公比的等比数列,.,解得.则当时,的最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.11D【解析】求出展开项中的常数项及含的项,问题得解。【详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D【点睛】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。12C【解析】如图所示:作垂直于准线交准线于,则,故,得到答案.【详解】如图所示:作垂直于准线交准线于,则,在中,故,即.
11、故选:.【点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.二、填空题:本题共4小题,每小题5分,共20分。131【解析】由已知数列递推式可得数列是以16为首项,以为公比的等比数列,再由等比数列的前项和公式求解【详解】由,得,且,则,即数列是以16为首项,以为公比的等比数列,则故答案为:1【点睛】本题主要考查数列递推式,考查等比数列的前项和,意在考查学生对这些知识的理解掌握水平14196 3 【解析】由二项式定理及二项式展开式通项得:,令x=1,则1+a0+a1+a7=(1+1)(1-2)7=-2,所以a0+a1+a7=-3,得解【详解】由二项式(12x)7展开式的通项得,
12、则,令x=1,则,所以a0+a1+a7=3,故答案为:196,3.【点睛】本题考查二项式定理及其通项,属于中等题.15【解析】画出不等式组表示的平面区域如下图中阴影部分所示,易知在点处取得最小值,即,所以由图可知的取值范围为16.【解析】计算外接圆的半径,并假设外接球的半径为R,可得球心在过外接圆圆心且垂直圆面的垂线上,然后根据面,即可得解.【详解】由题意可知,所以可得面,设外接圆的半径为,由正弦定理可得,即,设三棱锥外接球的半径,因为外接球的球心为过底面圆心垂直于底面的直线与中截面的交点,则,所以外接球的表面积为.故答案为:.【点睛】本题考查三棱锥的外接球的应用,属于中档题.三、解答题:共7
13、0分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】(1)当时,将函数写成分段函数,即可求得不等式的解集.(2)根据原命题是假命题,这命题的否定为真命题,即“,”为真命题,只需满足即可.【详解】解:(1)当时,由,得.故不等式的解集为.(2)因为“,”为假命题,所以“,”为真命题,所以.因为,所以,则,所以,即,解得,即的取值范围为.【点睛】本题考查绝对值不等式的解法,以及绝对值三角不等式,属于基础题.18(1);(2)4【解析】(1)根据已知用二倍角余弦求出,进而求出,利用正弦定理,即可求解;(2)由边角,利用余弦定理结合基本不等式,求出的最大值,即可求出结论.【详解】(1
14、),由正弦定理得.(2)由(1)知,所以,当且仅当时,的面积有最大值4.【点睛】本题考查正弦定理、余弦定理、三角恒等变换解三角形,应用基本不等式求最值,属于基础题.19(1),;(2)1.【解析】(1)利用正弦的和角公式,结合极坐标化为直角坐标的公式,即可求得曲线的直角坐标方程;先写出曲线的普通方程,再利用公式化简为极坐标即可;(2)先求出的直角坐标,据此求得中点的直角坐标,将其转化为极坐标,联立曲线的极坐标方程,即可求得两点的极坐标,则距离可解.【详解】(1):可整理为,利用公式可得其直角坐标方程为:,:的普通方程为,利用公式可得其极坐标方程为(2)由(1)可得的直角坐标方程为,故容易得,的
15、极坐标方程为,把代入得,.把代入得,.,即,两点间的距离为1.【点睛】本题考查极坐标方程和直角坐标方程之间的转化,涉及参数方程转化为普通方程,以及在极坐标系中求两点之间的距离,属综合基础题.20(1)函数的单调递增区间为和,单调递减区间为;(2).【解析】(1)由题可得,结合的范围判断的正负,即可求解;(2)结合导数及函数的零点的判定定理,分类讨论进行求解【详解】(1),当时,函数在内单调递增;当时,令,解得或,当或时,则单调递增,当时,则单调递减,函数的单调递增区间为和,单调递减区间为(2)()当时,所以在上无零点;()当时,若,即,则是的一个零点;若,即,则不是的零点()当时,所以此时只需
16、考虑函数在上零点的情况,因为,所以当时,在上单调递增。又,所以()当时,在上无零点;()当时,又,所以此时在上恰有一个零点; 当时,令,得,由,得;由,得,所以在上单调递减,在上单调递增,因为,所以此时在上恰有一个零点,综上,【点睛】本题考查利用导数求函数单调区间,考查利用导数处理零点个数问题,考查运算能力,考查分类讨论思想21(1)当 时,直线l方程为x1;当 时,直线l方程为y(x1)tan; x2y22x (2)或.【解析】(1)对直线l的倾斜角分类讨论,消去参数即可求出其普通方程;由,即可求出曲线C的直角坐标方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,根据条件0,即可求解.【详解】(1)当时,直线l的普通方程为x1;当时,消去参数得直线l的普通方程为y(x1)tan .由2cos ,得22cos ,所以x2y22x,即为曲线C的直角坐标方程(2)把x1tcos ,ytsin 代入x2y22x,整理得t24tcos 30.由16co
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品研发与技术转移制度
- 第2课《腊八粥》第一课时(教学设计)-【上好课】六年级语文下册部编版
- 2024年陕西客运技能鉴定题库
- 算法设计与分析 课件 4.7-分治法 - 典型应用 - 归并排序
- 2024年葫芦岛道路旅客运输考卷
- 2024年嘉峪关客运资格证考试题库下载
- 2024年玉林客运从业资格证考试网
- 2024年安徽客运资格证应用能力考试题答案
- 2024年上饶a1客运资格证
- 吉首大学《工程荷载与可靠度设计原理》2021-2022学年第一学期期末试卷
- 四川省成都市2024-2025学年八年级上学期期中考试英语试卷(四)
- 河南省信阳市2024-2025学年人教版八年级上期数学期中测试
- 2024-2025学年高一上学期期中考试动员主题班会课件
- 2022-2023学年北京市海淀区七年级(上)期中数学试卷【含解析】
- 小学道德与法治课评分表
- GB/T 324-2008焊缝符号表示法
- 220kV架空送电线路铁塔拆除施工方案
- 水闸工作桥计算说明书
- 钢结构夹层施工方案(完整版)
- 科教方案(范本)
- 浅谈针织物线密度的常用测试方法及检测标准
评论
0/150
提交评论