下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【教材分析】1、教学内容:数学归纳法是人教社全日制普通高级中学教科书数学选修2-2第二章第3节的内容,根据课标要求,本书该节共2课时,这是第一课时,其主要内容是数学归纳法的原理及其应用。2、地位作用:在已经学习了不完全归纳法的基础上,介绍了数学归纳法,它是一种用于关于正整数命题的直接证法。教材通过剖析生活实例中蕴含的思维过程揭示数学思想方法,即借助“多米诺骨牌”的设计思想,揭示数学归纳法依据的两个条件及它们之间的关系。【教学目标】1、知识与技能:(1)了解归纳法,理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤。(2)会证明简单的与正整数有关的命题。2、过程与方法:努力创设课堂愉悦的情
2、境,使学生处于积极思考,大胆质疑的氛围,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会类比的数学思想。3、情感、态度与价值观:通过本节课的教学,使学生领悟数学思想和辩证唯物主义观点,激发学生学习热情,提高学生数学学习的兴趣,培养学生大胆猜想,小心求证的辩证思维素质,以及发现问题、提出问题的意见和数学交流能力。【教学重点】借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些简单的与正整数n(n取无限多个值)有关的数学命题。【教学难点】(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二个步骤的作用,不易根据归纳假设作出证明。(2)运用数学归纳法时,在“归纳递
3、推”的步骤中发现具体问题的递推关系。【教学方法】运用类比启发探究的数学方法进行教学;【教学手段】借助多媒体呈现多米诺骨牌等生活素材辅助课堂教学;【教学程序】第一阶段:创设问题情境,启动学生思维情境1、小明家有四个孩子,分别叫大毛,二毛,三毛,问第四个孩子叫什么名字? 归纳猜想:第四个孩子叫四毛。他家的第四个孩子叫小明。“不完全归纳有时是错误的”(培养学生大胆猜想的意识和数学概括能力概括能力是思维能力的核心鲁宾斯坦指出:思维都是在概括中完成的心理学认为“迁移就是概括”,这里知识、技能、思维方法、数学原理的迁移,我找的突破口就是学生的概括过程)情境2 、数列通过对前4项归纳,猜想可以让学生通过数列
4、的知识加以验证“不完全归纳有时是正确的”。通过对上述两个情况的探究可以发现用“不完全归纳法”得到的结论不一定可靠。为了寻求一种能够证明与正整数有关的数学问题的方法,从而引入本节课的新课内容一数学归纳法。第二阶段:搜索生活实例,激发学习兴趣1、“多米诺骨牌”游戏动画演示:探究“多米诺骨牌”全部倒下的条件引导学生思考并分析“多米诺骨牌”全部倒下的两个条件;第一块骨牌倒下;任意相邻的两块骨牌,前一块倒下一定导致后一块倒下。强调条件的作用:是一种递推关系(第k块倒下,使第k+1块倒下)。2、类比“多米诺骨牌”的原理来验证情境2中对于通项公式的猜想。“多米诺骨牌”原理 第一块骨牌倒下; 若第k块倒下,则
5、使得第k+1块倒下验证猜想 验证猜想成立 如果时,猜想成立。即,则当时,即时猜想成立3、引导学生概括, 形成科学方法证明一个与正整数有关的命题关键步骤如下:(1) 证明当n取第一个值时结论正确;(归纳奠基)(2) 假设当nk (k,k) 时结论正确, 证明当nk1时结论也正确(归纳递推)完成这两个步骤后, 就可以断定命题对从开始的所有正整数n都正确这种证明方法叫做数学归纳法第三阶段:巩固认知结构,充实认知过程例1.用数学归纳法证明证明:(1)当n=1时,左边,右边,等式成立。(2)假设当n=k时,等式成立,即则当n=k+1时,左边=即当n=k+1时等式也成立。=右边由(1)、(2)可知,n时,
6、等式成立。师生共同总结:1、数学归纳法是一种完全归纳的证明方法,它适用于与自然数有关的问题。2、两个步骤、一个结论缺一不可,否则结论不能成立;3、在证明递推步骤时,必须使用归纳假设,进行恒等变换。4、完成第1)、2)步骤的证明后,要对命题成立进行总结。例2用数学归纳法证明:1+3+5+(2n1)=n2证明:(1)当n=1时,左边=1,右边=1,等式成立;(2)假设当n=k时,等式成立,即1+3+5+(2k1)=k2.那么1+3+5+(2k1)+2(k+1)1 =k2+2(k+1)1=k2+2k+1=(k+1)2.这就是说,当n=k+1时,等式也成立,由(1)和(2)可以断定,等式对任何nN+都
7、成立。探究:已知数列设Sn为数列前n项和,计算S1, S2 ,S3 ,S4,根据计算结果,猜想Sn的表达式,并用数学归纳法进行证明。解:可以看到,上面表示四个结果的分数中,分子与项数一致,分母可用项数n表示为3n+1,可以猜想证明过程由学生自主完成。【课堂小结】(1)数学归纳法只适用于证明与正整数有关的命题。(2)用数学归纳法证明命题的一般步骤:1验证n=n0(n0为命题允许的最小正整数)时,命题成立2假设n=k(kn0)时命题成立,证明n=k+1时命题成立,由1和2对任意的nn0, nN* 命题成立。(3)本节课通过从“多米诺骨牌”讲起,借助这个游戏的设计理念,揭示了数学归纳法依据的两个条件及它们之间的关系。(4)本节课使用数学归纳法只证明了与正整数有关的等式成立的问题,在以后的学习中,我们将会遇到使用数学归纳法证明与正整数有关的不等式及几何问题,也会遇到n0的取值不是1的情况。在下一节课我们还将通过具体的例子使同学们明白为什么在使用数学归纳法证明时两个步骤缺一不可。【作业】1. 习题2.3 A组 1.2.32. 思考:平面内有n条直线,其中任意两条不平行,任意三条不共点,设f(n)为n条直线的交点个数,求证: 证明:(1) n=1时,f(1)=1 等式成立 (2) 假设n=k时,等式成立 即 成立 那么当n=k+1时,根据(1)和(2),可知等式对任何nN*都
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年金融服务采购合同创新金融产品合作协议2篇
- 导演与发行方2025年度合同3篇
- 二零二五年度餐饮泔水处理与环保设施运营管理合同6篇
- 二零二五年度高校毕业生就业见习实践基地建设合作合同3篇
- 二零二五年度航空航天设备维修承包合同样本3篇
- 二零二五年高性能混凝土委托加工合同范本3篇
- 碎石买卖合同(二零二五年度)2篇
- 二零二五年度药品质量第三方检测合同范本6篇
- 二零二五版国际贸易中货物所有权转移与国际贸易政策研究合同3篇
- 2025年度电力设施租赁合同标的转让协议3篇
- 课题申报书:大中小学铸牢中华民族共同体意识教育一体化研究
- 岩土工程勘察课件0岩土工程勘察
- 《肾上腺肿瘤》课件
- 2024-2030年中国典当行业发展前景预测及融资策略分析报告
- 《乘用车越野性能主观评价方法》
- 幼师个人成长发展规划
- 2024-2025学年北师大版高二上学期期末英语试题及解答参考
- 批发面包采购合同范本
- 乘风化麟 蛇我其谁 2025XX集团年终总结暨颁奖盛典
- 2024年大数据分析公司与中国政府合作协议
- 一年级数学(上)计算题专项练习汇编
评论
0/150
提交评论