2022年河南省三门峡市灵宝市第三高考临考冲刺数学试卷含解析_第1页
2022年河南省三门峡市灵宝市第三高考临考冲刺数学试卷含解析_第2页
2022年河南省三门峡市灵宝市第三高考临考冲刺数学试卷含解析_第3页
2022年河南省三门峡市灵宝市第三高考临考冲刺数学试卷含解析_第4页
2022年河南省三门峡市灵宝市第三高考临考冲刺数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

2、要求的。1已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为( )ABCD2下列函数中,值域为R且为奇函数的是( )ABCD3已知函数,则( )A2B3C4D54已知,表示两个不同的平面,l为内的一条直线,则“是“l”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5已知函数,则下列判断错误的是( )A的最小正周期为B的值域为C的图象关于直线对称D的图象关于点对称6已知正四面体的棱长为,是该正四面体外接球球心,且,则( )ABCD7函数在上单调递减,且是偶函数,若 ,则 的取值范围是()A(2,+)B(,1)(2,+)C(1,2)D(,1)8已知等比

3、数列的各项均为正数,设其前n项和,若(),则( )A30BCD629如图,在中,是上一点,若,则实数的值为( )ABCD10设非零向量,满足,且与的夹角为,则“”是“”的( )A充分非必要条件B必要非充分条件C充分必要条件D既不充分也不必要条件11已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则( )ABCD12设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在ABC中,BAC,AD为BAC的角平分线,且,若AB2,则BC_.

4、14如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_15设点P在函数的图象上,点Q在函数的图象上,则线段PQ长度的最小值为_16的展开式中,若的奇数次幂的项的系数之和为32,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)当时,求曲线在点的切线方程;(2)讨论函数的单调性18(12分)正项数列的前n项和Sn满足: (1)求数列的通项公式; (2)令,数列bn的前n项和为Tn,证明:对于任意的nN*,都有Tn .19(12分)如图,在直角中,通过以直线为轴顺时针旋转得到

5、().点为斜边上一点.点为线段上一点,且.(1)证明:平面;(2)当直线与平面所成的角取最大值时,求二面角的正弦值.20(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A 级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量

6、把关这2位行家都认为质量过关,则该手工艺品质量为B 级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C 级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D 级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.求10件手工艺品中不能外销的手工艺品最有可能是多少件;记1件手工艺品的利润为X元,求X的分布列与期望.21(12分)如图,设点

7、为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,(1)求椭圆的方程.(2)当时,求的面积.22(10分)已知函数.(1)求证:当时,;(2)若对任意存在和使成立,求实数的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】利用抛物线的定义,求得p的值,由利用两点间距离公式求得,根据二次函数的性质,求得,由取得最小值为,求得结果.【详解】由抛物线焦点在轴上,准线方程,则点到焦点的距离为,则,所以抛物线方程:,设,圆,圆心为,半径为1,则,当时,取得最小值,最小值为,故选D.【点睛】该题考查的是有

8、关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.2C【解析】依次判断函数的值域和奇偶性得到答案.【详解】A. ,值域为,非奇非偶函数,排除; B. ,值域为,奇函数,排除;C. ,值域为,奇函数,满足; D. ,值域为,非奇非偶函数,排除;故选:.【点睛】本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用.3A【解析】根据分段函数直接计算得到答案.【详解】因为所以.故选:.【点睛】本题考查了分段函数计算,意在考查学生的计算能力.4A【解析】试题分析:利用面面平行和线面平行的定义和性质,结合充分条件

9、和必要条件的定义进行判断解:根据题意,由于,表示两个不同的平面,l为内的一条直线,由于“,则根据面面平行的性质定理可知,则必然中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,“是“l”的充分不必要条件故选A考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定5D【解析】先将函数化为,再由三角函数的性质,逐项判断,即可得出结果.【详解】可得对于A,的最小正周期为,故A正确;对于B,由,可得,故B正确;对于C,正弦函数对称轴可得:解得:,当,故C正确;对于D,正弦函数对称中心的横坐标为:解得:若图象关于点对称,则解得:,故D错误;故选:D.【点睛】本题考查三角恒等变换,三角

10、函数的性质,熟记三角函数基本公式和基本性质,考查了分析能力和计算能力,属于基础题.6A【解析】如图设平面,球心在上,根据正四面体的性质可得,根据平面向量的加法的几何意义,重心的性质,结合已知求出的值.【详解】如图设平面,球心在上,由正四面体的性质可得:三角形是正三角形,在直角三角形中,因为为重心,因此,则,因此,因此,则,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题.7B【解析】根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【详解】根据题意,函数 满足是偶函数,则函数的图像关于直线对称,若函数

11、在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B【点睛】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。8B【解析】根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.【详解】设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:,因此.故选:B【点睛】本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.9C【解析】由题意,可根据向量运算法则得到(1m),从而由向量分解的唯一性得出关于t的方程,求出t的值.【

12、详解】由题意及图,又,所以,(1m),又t,所以,解得m,t,故选C【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.10C【解析】利用数量积的定义可得,即可判断出结论【详解】解:,解得,解得, “”是“”的充分必要条件故选:C【点睛】本题主要考查平面向量数量积的应用,考查推理能力与计算能力,属于基础题11D【解析】根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.【详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选:D

13、.【点睛】本题综合考查了随机变量的期望方差的求法,结合了概率二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.12A【解析】依题意可得即可得到,从而求出双曲线的离心率的取值范围;【详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由,求出长度关系,利用角平分线以及面积关系,求出边,再由余弦定理,即可求解.【详解】,,.故答案为:.【点睛】本题考查共线向量的应用、面积公式、余弦定理解三角形,考查计算求解能力,属于中档题.14【解析】画图直观图可得该几何体为棱锥,再计算

14、高求解体积即可.【详解】解:如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,此四棱锥中,是边长为的正方形,是边长为的等边三角形,故,又,故平面平面,的高是四棱锥的高,此四棱锥的体积为:故答案为:【点睛】本题主要考查了四棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意15【解析】由解析式可分析两函数互为反函数,则图象关于对称,则点到的距离的最小值的二倍即为所求,利用导函数即可求得最值.【详解】由题,因为与互为反函数,则图象关于对称,设点为,则到直线的距离为,设,则,令,即,所以当时,即单调递减;当时,即单调递增,所以,则,所以

15、的最小值为,故答案为:【点睛】本题考查反函数的性质的应用,考查利用导函数研究函数的最值问题.16【解析】试题分析:由已知得,故的展开式中x的奇数次幂项分别为,其系数之和为,解得考点:二项式定理三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【解析】(1)根据导数的几何意义求解即可.(2)易得函数定义域是,且.故分,和与四种情况,分别分析得极值点的关系进而求得原函数的单调性即可.【详解】(1)当时,则切线的斜率为.又,则曲线在点的切线方程是

16、,即.(2)的定义域是.当时,所以当时,;当时,所以在上单调递增,在上单调递减;当时,所以当和时,;当时,所以在和上单调递增,在上单调递减;当时,所以在上恒成立.所以在上单调递增;当时,所以和时,;时,.所以在和上单调递增,在上单调递减.综上所述,当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【点睛】本题主要考查了导数的几何意义以及含参数的函数单调性讨论,需要根据题意求函数的极值点,再根据极值点的大小关系分类讨论即可.属于常考题.18(1)(2)见解析【解析】(1)因为数列的前项和满足:,所以当时,即解得或,因为数

17、列都是正项,所以,因为,所以,解得或,因为数列都是正项,所以,当时,有,所以,解得,当时,符合所以数列的通项公式,;(2)因为,所以,所以数列的前项和为:,当时,有,所以,所以对于任意,数列的前项和.19(1)见解析;(2)【解析】(1)先算出的长度,利用勾股定理证明,再由已知可得,利用线面垂直的判定定理即可证明;(2)由(1)可得为直线与平面所成的角,要使其最大,则应最小,可得为中点,然后建系分别求出平面的法向量即可算得二面角的余弦值,进一步得到正弦值.【详解】(1)在中,由余弦定理得,由题意可知:,平面,平面,又,平面.(2)以为坐标原点,以,的方向为,轴的正方向,建立空间直角坐标系.平面

18、,在平面上的射影是,与平面所成的角是,最大时,即,点为中点.,设平面的法向量,由,得,令,得,所以平面的法向量,同理,设平面的法向量,由,得,令,得,所以平面的法向量,故二面角的正弦值为.【点睛】本题考查线面垂直的判定定理以及利用向量法求二面角的正弦值,考查学生的运算求解能力,是一道中档题.20(1)(2)2 期望值为X900600300100P【解析】(1)一件手工艺品质量为B级的概率为.(2)由题意可得一件手工艺品质量为D 级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,则,则,.由得,所以当时,即,由得,所以当时,所以当时,最大,即10件手工艺品中不能外销的手工艺品最有可能是2件. 由上可得一件手工艺品质量为A 级的概率为,一件手工艺品质量为B级的概率为,一件手工艺品质量为C 级的概率为,一件手工艺品质量为D 级的概率为,所以X的分布列为X900600300100P则期望为.21(1)(2)【解析】(1)先求出圆心到直线的距离为,再根据得到,解之即得a的值,再根据c=1求出b的值得到椭圆的方程.(2)先求出,再求得的面积.【详解】(1)因为直线过点,且斜率.所以直线的方程为,即,所以圆心到直线的距离为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论