2022年河南南阳市高考数学四模试卷含解析_第1页
2022年河南南阳市高考数学四模试卷含解析_第2页
2022年河南南阳市高考数学四模试卷含解析_第3页
2022年河南南阳市高考数学四模试卷含解析_第4页
2022年河南南阳市高考数学四模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,在圆锥SO中,AB,CD为底面圆的两条直径,ABCDO,且ABCD,SOOB3,SE.,异面直线SC与OE所成角的正切值为( )ABCD2在平行六面体中,M为与的交点,若,,则与相等的向量是( )ABCD3在平面直角坐标系中,已知点,若动点满足 ,则的取值范围是( )ABCD4设复数满足,在复平面内对应的点为,则不可能为( )ABCD5已知等差数列的公差为,前项和为,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数( ).A6B5C4D36设集合Ay|y2

3、x1,xR,Bx|2x3,xZ,则AB( )A(1,3B1,3C0,1,2,3D1,0,1,2,37已知复数z满足,则在复平面上对应的点在( )A第一象限B第二象限C第三象限D第四象限8已知函数,若曲线上始终存在两点,使得,且的中点在轴上,则正实数的取值范围为( )ABCD9若实数满足的约束条件,则的取值范围是( )ABCD10已知抛物线,过抛物线上两点分别作抛物线的两条切线为两切线的交点为坐标原点若,则直线与的斜率之积为( )ABCD11一个频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有( )ABCD12若函数为自然对数的底数)在区

4、间上不是单调函数,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是_14已知圆柱的上下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为36的正方形,则该圆柱的体积为_15四面体中,底面,则四面体的外接球的表面积为_16的二项展开式中,含项的系数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)对于正整数,如果个整数满足,且,则称数组为的一个“正整数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.()写出整数4的所有“正整数分拆”

5、;()对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;()对所有的正整数,证明:;并求出使得等号成立的的值.(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)18(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.19(12分)如图,三棱柱中,平面,分别为,的中点.(1)求证: 平面;(2)若平面平面,求直线与平面所成角的正弦值.20(12分)在平面直角坐标系xoy中,曲线C的方程为

6、.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;(2)设P是椭圆上的动点,求面积的最大值.21(12分)已知.(1)若曲线在点处的切线也与曲线相切,求实数的值;(2)试讨论函数零点的个数.22(10分)2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100年.为继承和发扬五四精神在青年节到来之际,学校组织“五四运动100周年”知识竞赛,竞赛的一个环节由10道题目组成,其中6道A类题、4道B类题,

7、参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛.(1)求甲同学至少抽到2道B类题的概率;(2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已知甲同学恰好抽中2道A类题和1道B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】可过点S作SFOE,交AB于点F,并连接CF,从而可得出CSF(或补角)为异面直线SC与OE所成的角,根据条件即可求出,这样即可得出tanCSF的值.【详解】如图,过点S作S

8、FOE,交AB于点F,连接CF,则CSF(或补角)即为异面直线SC与OE所成的角,又OB3,SOOC,SOOC3,;SOOF,SO3,OF1,;OCOF,OC3,OF1,等腰SCF中,.故选:D.【点睛】本题考查了异面直线所成角的定义及求法,直角三角形的边角的关系,平行线分线段成比例的定理,考查了计算能力,属于基础题.2D【解析】根据空间向量的线性运算,用作基底表示即可得解.【详解】根据空间向量的线性运算可知因为,,则即,故选:D.【点睛】本题考查了空间向量的线性运算,用基底表示向量,属于基础题.3D【解析】设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的

9、范围,可求得结果.【详解】设 ,则, 为点的轨迹方程点的参数方程为(为参数) 则由向量的坐标表达式有:又故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:直接法;定义法;相关点法;参数法;待定系数法4D【解析】依题意,设,由,得,再一一验证.【详解】设,因为,所以,经验证不满足,故选:D.【点睛】本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础题.5C【解析】若对任意的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可.【详解】由已知,又三角形有一个内角为

10、,所以,解得或(舍),故,当时,取得最大值,所以.故选:C.【点睛】本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题.6C【解析】先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可【详解】解:集合Ay|y2x1,xRy|y1,Bx|2x3,xZ2,1,0,1,2,3,AB0,1,2,3,故选:C【点睛】本题主要考查集合的交集运算,属于基础题7A【解析】设,由得:,由复数相等可得的值,进而求出,即可得解.【详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.【点睛】本题考查共轭复数的求法,考查对复数相等的理解,

11、考查复数在复平面对应的点,考查运算能力,属于常考题.8D【解析】根据中点在轴上,设出两点的坐标,().对分成三类,利用则,列方程,化简后求得,利用导数求得的值域,由此求得的取值范围.【详解】根据条件可知,两点的横坐标互为相反数,不妨设,(),若,则,由,所以,即,方程无解;若,显然不满足;若,则,由,即,即,因为,所以函数在上递减,在上递增,故在处取得极小值也即是最小值,所以函数在上的值域为,故.故选D.【点睛】本小题主要考查平面平面向量数量积为零的坐标表示,考查化归与转化的数学思想方法,考查利用导数研究函数的最小值,考查分析与运算能力,属于较难的题目.9B【解析】根据所给不等式组,画出不等式

12、表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,所以线性目标函数的取值范围为,故选:B.【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.10A【解析】设出A,B的坐标,利用导数求出过A,B的切线的斜率,结合,可得x1x21再写出OA,OB所在直线的斜率,作积得答案【详解】解:设A(),B(),由抛物线C:x21y,得,则y,由,可得,即x1x21又,故选:A点睛:(1)本题主要考查抛物线的简单几何性质,考查

13、直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A,B,再求切线PA,PB方程,求点P坐标,再根据得到最后求直线与的斜率之积.如果先设点P的坐标,计算量就大一些.11B【解析】计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.【详解】由题意可知,样本在的数据个数为,样本在的数据个数为,因此,样本在、内的数据个数为.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.12B【解析】求得的导函数,由此构造函数,根据题意可知在

14、上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【详解】,设,要使在区间上不是单调函数,即在上有变号零点,令, 则,令,则问题即在上有零点,由于在上递增,所以的取值范围是.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】Aa设正四棱柱的高为h得到故得到正四棱柱的体积为故答案为54.14【解析】由轴截面是正方形,易求底面半径和高,则圆柱的体积易求.【详解】解:因为轴截面是正方形,且面积是36,所以圆柱的底面直径和高都是6故答案为:【点睛】考查圆

15、柱的轴截面和其体积的求法,是基础题.15【解析】由题意画出图形,补形为长方体,求其对角线长,可得四面体外接球的半径,则表面积可求【详解】解:如图,在四面体中,底面,可得,补形为长方体,则过一个顶点的三条棱长分别为1,1,则长方体的对角线长为,则三棱锥的外接球的半径为1其表面积为故答案为:【点睛】本题考查多面体外接球表面积的求法,补形是关键,属于中档题16【解析】写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【详解】,由,可得.含项的系数为.故答案为:【点睛】本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程

16、或演算步骤。17 () ,;() 为偶数时,为奇数时,;()证明见解析,【解析】()根据题意直接写出答案.()讨论当为偶数时,最大为,当为奇数时,最大为,得到答案.() 讨论当为奇数时,至少存在一个全为1的拆分,故,当为偶数时, 根据对应关系得到,再计算,得到答案.【详解】()整数4的所有“正整数分拆”为:,.()当为偶数时,时,最大为;当为奇数时,时,最大为;综上所述:为偶数,最大为,为奇数时,最大为.()当为奇数时,至少存在一个全为1的拆分,故;当为偶数时,设是每个数均为偶数的“正整数分拆”,则它至少对应了和的均为奇数的“正整数分拆”,故.综上所述:.当时,偶数“正整数分拆”为,奇数“正整

17、数分拆”为,;当时,偶数“正整数分拆”为,奇数“正整数分拆”为,故;当时,对于偶数“正整数分拆”,除了各项不全为的奇数拆分外,至少多出一项各项均为的“正整数分拆”,故.综上所述:使成立的为:或.【点睛】本土考查了数列的新定义问题,意在考查学生的计算能力和综合应用能力.18(1);(2)最小值为,此时【解析】(1)消去曲线参数方程的参数,求得曲线的普通方程.利用极坐标和直角坐标相互转化公式,求得曲线的直角坐标方程.(2)设出的坐标,结合点到直线的距离公式以及三角函数最值的求法,求得的最小值及此时点的坐标.【详解】(1)消去得,曲线的普通方程是:;把,代入得,曲线的直角坐标方程是(2)设,的最小值

18、就是点到直线的最小距离.设在时,是最小值,此时,所以,所求最小值为,此时【点睛】本小题主要考查参数方程化为普通方程,考查极坐标方程转化为直角坐标方程,考查利用圆锥曲线的参数求最值,属于中档题.19(1)详见解析;(2).【解析】(1)连接,则且为的中点,又为的中点,又平面,平面,故平面 (2)由平面,得,以为原点,分别以,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则,取平面的一个法向量为,由,得:,令,得同理可得平面的一个法向量为平面平面,解得,得,又,设直线与平面所成角为,则.所以,直线与平面所成角的正弦值是20(1),;(2).【解析】(1)利用公式即可求得曲线的极坐标方程;联

19、立直线和曲线的极坐标方程,即可求得交点坐标;(2)设出点坐标的参数形式,将问题转化为求三角函数最值的问题即可求得.【详解】(1)曲线的极坐标方程: 联立,得,又因为都满足两方程,故两曲线的交点为,.(2)易知,直线. 设点,则点到直线的距离(其中). 面积的最大值为.【点睛】本题考查极坐标方程和直角坐标方程之间的相互转化,涉及利用椭圆的参数方程求面积的最值问题,属综合中档题.21(1)(2)答案不唯一具体见解析【解析】(1)利用导数的几何意义,设切点的坐标,用不同的方式求出两种切线方程,但两条切线本质为同一条,从而得到方程组,再构造函数研究其最大值,进而求得;(2)对函数进行求导后得,对分三种情况进行一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论