




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、关于二分法求函数的交点第一张,PPT共十七页,创作于2022年6月新课引入 某个雷电交加的夜晚,医院的医生正在抢救一个危重病人,忽然电停了,医院采取了应急措施。据了解原因是供电站到医院的某处线路出现了故障,维修工如何迅速查出故障所在? (线路长10km,每50m一棵电线杆) 如果沿着线路一小段一小段查找,困难很多。每查一个点要爬一次电线杆子,10km长,大约有200根电线杆子。 维修线路的工人师傅怎样工作合理?想一想第二张,PPT共十七页,创作于2022年6月?探索问题 提取原理如图,设供电站和医院的所在处分别为点A、B(间距10km) A(供电站) 这样每查一次,就可以把待查的线路长度缩减一
2、半C B(医院)DE 要把故障可能发生的范围缩小到50m100m左右,即一两根电杆附近,最多查几次就可以了? 算一算7次取中点这种解决问题的方法,就是我们今天要学的二分法。第三张,PPT共十七页,创作于2022年6月 用二分法求方程的近似解第四张,PPT共十七页,创作于2022年6月知识回顾对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点. 零点概念:等价关系:方程f(x)=0有实数根 函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点零点存在定理:如果函数y=f(x)的图象在区间a,b上连续不断、且f(a)f(b)0,那么函数y=f(x)在区间a,b上必有
3、零点.第五张,PPT共十七页,创作于2022年6月问题1:你能求下列方程的解吗?新知探究问题2:以方程 为例,能不能确定方程根的大概范围呢? 第六张,PPT共十七页,创作于2022年6月回顾旧知: 问题2:以方程 为例,能不能确定方程根的大概范围呢? 新知探究第七张,PPT共十七页,创作于2022年6月232.52.75 问题3:你有进一步缩小函数零点的范围的方法吗? 2.625新知探究第八张,PPT共十七页,创作于2022年6月二分法的定义:概念形成二分法的理论依据是什么??想一想?第九张,PPT共十七页,创作于2022年6月次数区间长度:12340.5所以方程的近似解为:2.5-0.084
4、2.530.250.1250.06252.750.5122.6250.2150.0662.56252.52.7523由于|2.5625-2.5|=0.06250.12.52.752.652.5625 问题4: 初始区间(2,3)且第十张,PPT共十七页,创作于2022年6月探究归纳1.确定区间a,b,验证f(a)f(b)0,给定精确度;3.计算f(c); 2.求区间(a,b)的中点c; (1)若f(c)=0,则c就是函数的零点;(2)若f(a) f(c)0,则令b= c(此时零点x0(a, c) );(3)若f(c) f(b)0,则令a= c(此时零点x0( c, b) ).4.判断是否达到精
5、确度:即若|a-b|,则得到零点近似值a(或b);否则重复步骤24第十一张,PPT共十七页,创作于2022年6月例1:xy0 xy00 xy0 xyADcB概念拓展 实践探究第十二张,PPT共十七页,创作于2022年6月实践探究想一想如何确定初始区间解: 记函数xy02xy02xy02概念拓展 实践探究第十三张,PPT共十七页,创作于2022年6月解:设 =x,则建立函数f(x)=x33,求f(x)的零点的近似值。例3不用计算器,求 的近似值(精确度0.01)取a=1,b=2,f(1)=20,x1=1.5,f(x1)=0.3750,区间1,1.5,x2=1.25,f(x2)=0.04690,区
6、间1.25,1.375,概念拓展 实践探究x5=1.28125,f(x5)=0.10330,区间1.25,1.28125,x6=1.26562,f(x6)=0.0273,区间1.25,1.26562,x7=1.25781,f(x7)=0.1,区间1.25781,1.26562, 1.26.x4=1.3125,f(x4)=0.2610,区间1.25,1.3125第十四张,PPT共十七页,创作于2022年6月周而复始怎么办? 定区间,找中点,零点落在异号间,口 诀反思小结 体会收获中值计算两边看;区间长度缩一半;精确度上来判断.第十五张,PPT共十七页,创作于2022年6月巩固提高 课外练习 1、课堂作业:P92习题3.1A组 3、 4、 52、课外作业:(1)阅读课本P91 中外历史上的方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院门诊员工合同范例
- 合伙人经营合同范本
- 北京单位用工合同范本
- 做瓷砖合同范本
- 兼职无合同范本
- 原木供货合同范本
- 公司宣传设计合同范本
- 公司水电装修合同范本
- 出售烘培机器合同范本
- 出售商铺转让合同范本
- 绩效评价师考试-随机题库
- CSC-103微机线路成套保护装置检验作业指导书
- 叉车日常维护保养检查记录表
- 铁路桥梁工程各工序工效分析
- 2022《文创产品的设计》PPT演示文稿
- 介入科制度汇编
- 镀锌管理论重量表常用
- 铁总计统【2017】177号关于进一步加强铁路建设项目征地拆迁工作和费用管理的指导意见
- 电子技术基础与技能-(3)
- 部编版四年级下册语文第二单元课文教材分析及全部教案
- 美术开学第一课(课堂PPT)
评论
0/150
提交评论