二次函数知识点总结(详细) (2)_第1页
二次函数知识点总结(详细) (2)_第2页
二次函数知识点总结(详细) (2)_第3页
二次函数知识点总结(详细) (2)_第4页
二次函数知识点总结(详细) (2)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 教师姓名学生姓名年 级初三上课日期2015/11学 科 数学课题名称二次函数知识点总结计划时长2h教学目标教学重难点一、二次函数概念:1二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数,而可以为零二次函数的定义域是全体实数2. 二次函数的结构特征: 等号左边是函数,右边是关于自变量的二次式,的最高次数是2 是常数,是二次项系数,是一次项系数,是常数项二、二次函数的基本形式1. 二次函数基本形式:的性质:a 的绝对值越大,抛物线的开口越小。的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值向下轴

2、时,随的增大而减小;时,随的增大而增大;时,有最大值 2. 的性质:上加下减。的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值3. 的性质:左加右减。的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值4. 的性质:的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值三、二次函数图象的平移

3、1. 平移步骤:方法一: 将抛物线解析式转化成顶点式,确定其顶点坐标; 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”概括成八个字“左加右减,上加下减” 方法二:沿轴平移:向上(下)平移个单位,变成(或)沿轴平移:向左(右)平移个单位,变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点

4、、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.六、二次函数的性质 1. 当时,抛物线开口向上,对称轴为,顶点坐标为当时,随的增大而减小;当时,随的增大而增大;当时,有最小值 2. 当时,抛物线开口向下,对称轴为,顶点坐标为当时,随的增大而增大;当时,随的增大而减小;当时,有最大值七、二次函数解析式的表示方法1. 一般式:(,为常数,);2. 顶点式:(,为常数,);3. 两根式:(,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数

5、都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数二次函数中,作为二次项系数,显然 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大; 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小2. 一次项系数 在二次项系数确定的前提下,决定了抛物线的对称轴 在的前提下,当时,即抛物线的对称轴在轴左侧;当时,即抛物线的对称轴就是轴;当时,即抛物线对称轴在轴的右侧 在的前提下,

6、结论刚好与上述相反,即当时,即抛物线的对称轴在轴右侧;当时,即抛物线的对称轴就是轴;当时,即抛物线对称轴在轴的左侧总结起来,在确定的前提下,决定了抛物线对称轴的位置的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”总结: 3. 常数项 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正; 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为; 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负 总结起来,决定了抛物线与轴交点的位置 总之,只要都确定,那么这条抛物线就是唯一确定的二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数

7、法用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式九、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数: 当时,图象与轴交于两点,其中的是一元二次方程的两根这两点间的距离. 当时,图象与轴只有一个交点; 当时,图象与轴没有交点. 当时

8、,图象落在轴的上方,无论为任何实数,都有; 当时,图象落在轴的下方,无论为任何实数,都有 2. 抛物线的图象与轴一定相交,交点坐标为,; 3. 二次函数常用解题方法总结: 求二次函数的图象与轴的交点坐标,需转化为一元二次方程; 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; 根据图象的位置判断二次函数中,的符号,或由二次函数中,的符号判断图象的位置,要数形结合; 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标. 与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为

9、例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:抛物线与轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根抛物线与轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根抛物线与轴无交点二次三项式的值恒为正一元二次方程无实数根.十、函数的应用二次函数应用一、二次函数的定义例1、已知函数y=(m1)xm2 +1+5x3是二次函数,求m的值。练习、若函数y=(m2+2m7)x2+4x+5是关于x的二次函数,则m的取值范围为 。二、五点作图法的应用 例2. 已知抛物线,(1)用配方法求它的顶点坐标和对称轴并用五点法作图(2)若该抛物线与x轴的两个交点为A、B,求

10、线段AB的长1、(2009泰安)抛物线的顶点坐标为(A)(-2,7) (B)(-2,-25) (C)(2,7) (D)(2,-9)2、(南充)抛物线的对称轴是直线( )ABCD3、(遂宁)把二次函数用配方法化成的形式 三、及的符号确定例3. 已知抛物线如图,试确定: (1)及的符号;(2)与的符号。1、已知二次函数()的图象如图所示,有下列四个结论:,其中正确的个数有( )A1个B2个C3个D4个2、已知二次函数的图象如图所示,有以下结论:;其中所有正确结论的序号是( )ABCD11Oxy yxO113、二次函数的图象如图所示,则下列关系式中错误的是( )Aa0Bc0C0D0图12为二次函数的

11、图象,给出下列说法:;方程的根为;当时,y随x值的增大而增大;当时,其中,正确的说法有 (请写出所有正确说法的序号)5、已知=次函数yax+bx+c的图象如图则下列5个代数式:ac,a+b+c,4a2b+c,2a+b,2ab中,其值大于0的个数为( ) A2 B 3 C、4 D、5四、二次函数解析式的确定例4. 求二次函数解析式: (1)抛物线过(0,2),(1,1),(3,5); (2)顶点M(-1,2),且过N(2,1);(3)已知抛物线过A(1,0)和B(4,0)两点,交y轴于C点且BC5,求该二次函数的解析式。练习:根据下列条件求关于x的二次函数的解析式当x=3时,y最小值=1,且图象

12、过(0,7)图象过点(0,2)(1,2)且对称轴为直线x= EQ F(3,2) 图象经过(0,1)(1,0)(3,0)五、二次函数与x轴、y轴的交点(二次函数与一元二次方程的关系)已知抛物线yx2-2x-8,(1)求证:该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点为A、B,且它的顶点为P,求ABP的面积。1、二次函数yx2-2x-3图象与x轴交点之间的距离为 如图所示,二次函数yx24x3的图象交x轴于A、B两点, 交y 轴于点C, 则ABC的面积为( ) A.6 B.4 C.3 D.13、若二次函数y(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m 的取值范围

13、是 六、直线与二次函数的问题例6 已知:二次函数为y=x2x+m,(1)写出它的图像的开口方向,对称轴及顶点坐标;(2)m为何值时,顶点在x轴上方,(3)若抛物线与y轴交于A,过A作ABx轴交抛物线于另一点B,当SAOB=4时,求此二次函数的解析式1、抛物线y=x2+7x+3与直线y=2x+9的交点坐标为 。2、直线y=7x+1与抛物线y=x2+3x+5的图象有 个交点。 例7 已知关于x的二次函数y=x2mx+与y=x2mx,这两个二次函数的图像中的一条与x轴交于A,B两个不同的点 (1)试判断哪个二次函数的图像经过A,B两点; (2)若A点坐标为(1,0),试求B点坐标; (3)在(2)的

14、条件下,对于经过A,B两点的二次函数,当x取何值时,y的值随x值的增大而减小? 练习 如图,在平面直角坐标系中,OBOA,且OB2OA,点A的坐标是(1,2)(1)求点B的坐标;(2)求过点A、O、B的抛物线的表达式;(3)连接AB,在(2)中的抛物线上求出点P,使得SABPSABO 例8 已知:m,n是方程x26x+5=0的两个实数根,且mn,抛物线y=x2+bx+c的图像经过点A(m,0),B(0,n),如图所示 (1)求这个抛物线的解析式; (2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和BCD的面积;(3)P是线段OC上的一点,过点P作PHx轴,与

15、抛物线交于H点,若直线BC把PCH分成面积之比为2:3的两部分,请求出P点的坐标 七、用二次函数解决最值问题例9 某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元)152030y(件)252010 若日销售量y是销售价x的一次函数 (1)求出日销售量y(件)与销售价x(元)的函数关系式; (2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元? 例3.你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m,距地面均为1m,学生丙、丁分别站在距甲拿

16、绳的手水平距离1m、25 m处绳子在甩到最高处时刚好通过他们的头顶已知学生丙的身高是15 m,则学生丁的身高为(建立的平面直角坐标系如右图所示)( )A15 m B1625 mC166 m D167 m八、二次函数应用(一)经济策略性1.某商店购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高销售价格。经检验发现,若按每件20元的价格销售时,每月能卖360件若按每件25元的价格销售时,每月能卖210件。假定每月销售件数y(件)是价格X的一次函数.(1)试求y与x的之间的关系式.(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润

17、,每月的最大利润是多少?(总利润=总收入总成本)2.有一种螃蟹,从海上捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元。(1)设X天后每千克活蟹的市场价为P元,写出P关于X的函数关系式。(2)如果放养X天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数

18、关系式。(2)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额收购成本费用),最大利润是多少?自我检测(30分钟)一. 选择题。 1. 用配方法将化成的形式( ) A. B. C. D. 2. 对于函数,下面说法正确的是( ) A. 在定义域内,y随x增大而增大 B. 在定义域内,y随x增大而减小 C. 在内,y随x增大而增大 D. 在内,y随x增大而增大 3. 已知,那么的图象( ) 4. 已知点(-1,3)(3,3)在抛物线上,则抛物线的对称轴是( )A. B. C. D. 5. 一次函数和二次函数在同一坐标系内的图象( ) 6. 函数的最大值为( ) A. B. C. D.

19、 不存在二. 填空题。 7. 是二次函数,则_。 8. 抛物线的开口向_,对称轴是_,顶点坐标是_。 9. 抛物线的顶点是(2,3),且过点(3,1),则_,_,_。 10. 函数图象沿y轴向下平移2个单位,再沿x轴向右平移3个单位,得到函数_的图象。三. 解答题。 12. 抛物线,m为非负整数,它的图象与x轴交于A和B,A在原点左边,B在原点右边。 (1)求这个抛物线解析式。 (2)一次函数的图象过A点与这个抛物线交于C,且,求一次函数解析式。 强化训练一、填空题1 右图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图像,观察图像写出y2y1时,x的取值范围_2 已知抛物线y=a

20、2+bx+c经过点A(2,7),B(6,7),C(3,8),则该抛物线上纵坐标为8的另一点的坐标是_3已知二次函数y=x2+2x+c2的对称轴和x轴相交于点(m,0),则m的值为_4 若二次函数y=x24x+c的图像与x轴没有交点,其中c为整数,则c=_(只要求写出一个)5 已知抛物线y=ax2+bx+c经过点(1,2)与(1,4),则a+c的值是_6甲,乙两人进行羽毛球比赛,甲发出一十分关键的球,出手点为P,羽毛球飞行的水平距离s(m)与其距地面高度h(m)之间的关系式为h=s2+s+如下左图所示,已知球网AB距原点5m,乙(用线段CD表示)扣球的最大高度为m,设乙的起跳点C的横坐标为m,若

21、乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是_ 7 二次函数y=x22x3与x轴两交点之间的距离为_8 兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/m2)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8),已知点(x,y)都在一个二次函数的图像上(如上右图),则6楼房子的价格为_元/m2二、选择题9 二次函数y=ax2+bx+c的图像如图所示,则下列关系式不正确的是( )Aa0 Ca+b+c0 (第9题) (第12题) (第15题)10 已知二次函数y=ax2+bx+c的图像过点A(1,2),B(3,2),C(5,7)若点M(2,y1),N(1,y2),K(8,y3)也在二次函数y=ax2+bx+c的图像上,则下列结论中正确的是( ) Ay1y2y3 By2y1y3 Cy3y1y2 Dy1y30)交x轴A,B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(1,0) (1)求抛物线的对称轴及点A的坐标; (2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;(3)连接CA与抛物线的对称轴交于点D,当APD=ACP时,求抛物线的解析式18 如图所示,m,n是方程x26x+5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论