重点中学八级下学期数学期末冲刺试卷两套汇编九内附答案解析_第1页
重点中学八级下学期数学期末冲刺试卷两套汇编九内附答案解析_第2页
重点中学八级下学期数学期末冲刺试卷两套汇编九内附答案解析_第3页
重点中学八级下学期数学期末冲刺试卷两套汇编九内附答案解析_第4页
重点中学八级下学期数学期末冲刺试卷两套汇编九内附答案解析_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2017年重点中学八年级下学期数学期末冲刺试卷两套汇编九内附答案解析八年级(下)期末数学试卷一、选择题:(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1下列方程中,不是分式方程的是()ABCD2函数y=2x+3的图象经过()A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限3如果点C是线段AB的中点,那么下列结论中正确的是()ABCD4小杰两手中仅有一只手中有硬币,他让小敏猜哪只手中有硬币下列说法正确的是()A第一次猜中的概率与重放后第二次猜中的概率不一样B第一次猜不中后,小杰重放后

2、再猜1次肯定能猜中C第一次猜中后,小杰重放后再猜1次肯定猜不中D每次猜中的概率都是0.55如图,在梯形ABCD中,ABCD,AD=DC=CB,ACBC,那么下列结论不正确的是()AAC=2CDBDBADCABC=60DDAC=CAB6下列命题中,假命题是()A有一组对角是直角且一组对边平行的四边形是矩形B有一组对角是直角且一组对边相等的四边形是矩形C有两个内角是直角且一组对边平行的四边形是矩形D有两个内角是直角且一组对边相等的四边形是矩形二、填空题(本大题共12题,每题2分,满分24分)7一次函数y=3x5的图象在y轴上的截距为8已知直线y=kx+b经过点(2,2),并且与直线y=2x+1平行

3、,那么b=9如果一次函数y=(m2)x+m的函数值y随x的值增大而增大,那么m的取值范围是10关于x的方程a2x+x=1的解是11方程的解为12如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,那么当y0时,自变量x的取值范围是132名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是14如果一个八边形的每一个内角都相等,那么它的一个内角的度数等于度15在ABCD中,如果A+C=140,那么B=度16如图,在ABC中,点D、E分别是边AB、AC的中点,已知DE=6cm,则BC=cm17在梯形ABCD中,ADBC,AB=CD,ACBD如果AD=4,BC=10,那么梯

4、形ABCD的面积等于18如图,在ABC中,AB=AC,点M、N分别在边AB、AC上,且MNAC将四边形BCNM沿直线MN翻折,点B、C的对应点分别是点B、C,如果四边形ABBC是平行四边形,那么BAC=度三、计算题(本大题共8题,满分58分)19解方程:20解方程组:21已知:如图,在ABC中,设,(1)填空: =;(用、的式子表示)(2)在图中求作(不要求写出作法,只需写出结论即可)22已知直线y=kx+b经过点A(3,8),且与直线的公共点B的横坐标为6(1)求直线y=kx+b的表达式;(2)设直线y=kx+b与y轴的公共点为点C,求BOC的面积23已知:如图,在正方形ABCD中,点E在边

5、BC上,点F在边CD的延长线上,且BE=DF(1)求AEF的度数;(2)如果AEB=75,AB=2,求FEC的面积24某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时从学校出发已知先遣队每小时比大部队多行进1千米,预计比大部队早半小时到达目的地求先遣队与大部队每小时各行进了多少千米25已知:如图,在ABCD中,E为边CD的中点,联结AE并延长,交边BC的延长线于点F(1)求证:四边形ACFD是平行四边形;(2)如果B+AFB=90,求证:四边形ACFD是菱形26已知:如图,在梯形ABCD中,ADBC,ABBC,E是边AB的中点,联结DE、CE,且DECE设

6、AD=x,BC=y(1)如果BCD=60,求CD的长;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)联结BD如果BCD是以边CD为腰的等腰三角形,求x的值参考答案与试题解析一、选择题:(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1下列方程中,不是分式方程的是()ABCD【考点】分式方程的定义【分析】判断一个方程是否为分式方程主要是看这个方程的分母中是否含有未知数【解答】解:A、该方程符合分式方程的定义,属于分式方程,故本选项错误;B、该方程属于无理方程,故本选项正确;C、该方程符合分式方

7、程的定义,属于分式方程,故本选项错误;D、该方程符合分式方程的定义,属于分式方程,故本选项错误;故选:B【点评】本题考查了分式方程的定义:分母中含有未知数的方程叫做分式方程2函数y=2x+3的图象经过()A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限【考点】一次函数的性质【专题】探究型【分析】直接根据一次函数的性质进行解答即可【解答】解:一次函数y=2x+3中,k=20,b=30,此函数的图象经过一、二、四象限故选B【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k0)中,当k0,b0时函数图象经过一、二、四象限是解答此题的关键3如果点C是线段AB的中点

8、,那么下列结论中正确的是()ABCD【考点】*平面向量【专题】计算题【分析】根据点C是线段AB的中点,可以判断|=|,但它们的方向相反,继而即可得出答案【解答】解:由题意得:|=|,且它们的方向相反,有=,故选C【点评】本题考查了平面向量的知识,注意向量包括长度及方向,及0与的不同4小杰两手中仅有一只手中有硬币,他让小敏猜哪只手中有硬币下列说法正确的是()A第一次猜中的概率与重放后第二次猜中的概率不一样B第一次猜不中后,小杰重放后再猜1次肯定能猜中C第一次猜中后,小杰重放后再猜1次肯定猜不中D每次猜中的概率都是0.5【考点】列表法与树状图法;概率公式【分析】首先直接利用概率公式求得第一次猜中的

9、概率;首先根据题意画出树状图,然后由树状图求得等可能的结果与第二次猜中的情况,再利用概率公式即可求得答案【解答】解:第一次猜中的概率为:;画树状图得:共有4种等可能的结果,重放后第二次猜中的有2种情况,第二次猜中的概率为:每次猜中的概率都是0.5故选D【点评】此题考查了树状图法与列表法求概率用到的知识点为:概率=所求情况数与总情况数之比5如图,在梯形ABCD中,ABCD,AD=DC=CB,ACBC,那么下列结论不正确的是()AAC=2CDBDBADCABC=60DDAC=CAB【考点】梯形【分析】A、根据三角形的三边关系即可得出A不正确;B、通过等腰梯形的性质结合全等三角形的判定与性质即可得出

10、ADB=90,从而得出B正确;C、由梯形的性质得出ABCD,结合角的计算即可得出ABC=60,即C正确;D、由平行线的性质结合等腰三角形的性质即可得出DAC=CAB,即D正确综上即可得出结论【解答】解:A、AD=DC,ACAD+DC=2CD,A不正确;B、在梯形ABCD中,AD=CB,梯形ABCD为等腰梯形,DAB=CBA在DAB和CBA中,DABCBA(SAS),ADB=BCAACBC,ADB=BCA=90,DBAD,B成立;C、ABCD,CDB=ABD,ABC+DCB=180,DC=CB,CDB=CBD=ABD,ACB=90,CDB=CBD=ABD=30,ABC=ABD+CBD=60,C正

11、确;D、ABCD,DCA=CAB,AD=DC,DAC=DCA=CAB,D正确故选A【点评】本题考查了梯形的性质、平行线的性质、等腰三角形的性质以及全等三角形的判定与性质,解题的关键是逐项分析四个选项的正误本题属于中档题,稍显繁琐,但好在该题为选择题,只需由三角形的三边关系得出A不正确即可6下列命题中,假命题是()A有一组对角是直角且一组对边平行的四边形是矩形B有一组对角是直角且一组对边相等的四边形是矩形C有两个内角是直角且一组对边平行的四边形是矩形D有两个内角是直角且一组对边相等的四边形是矩形【考点】矩形的判定【分析】利用矩形的定义或者是矩形的判定定理分别判断四个选项的正误即可【解答】解:A、

12、有一组对角是直角且一组对边平行即可得到两组对边平行或四个角均是直角,故此选项不符合题意;B、有一组对角是直角且一组对边相等可以得到其两组对边平行,有一个角是直角的平行四边形是矩形可知此选项不符合题意;C、有两个内角是直角且一组对边平行的四边形可能是直角梯形,故此选项符合题意;D、有两个内角是直角的且一组对边相等可以得到其两组对边相等,所以能判定其是一个平行四边形,根据有一个角是直角的平行四边形是矩形可知此选项不符合题意故选C【点评】本题考查了矩形的判定,熟练掌握矩形的判定方法是解决此类题目的关键举反例往往是解决此类题目的重要的方法二、填空题(本大题共12题,每题2分,满分24分)7一次函数y=

13、3x5的图象在y轴上的截距为5【考点】一次函数图象上点的坐标特征【分析】在y轴上的截距,求与y轴的交点坐标即可【解答】解:在y=3x5中,令x=0,可得y=5,一次函数y=3x5的图象与y轴的交点坐标为(0,5),一次函数y=3x5的图象在y轴上的截距为5,故答案为:5【点评】本题主要考查函数与坐标轴的交点,掌握截距与坐标的关系是解题的关键8已知直线y=kx+b经过点(2,2),并且与直线y=2x+1平行,那么b=6【考点】两条直线相交或平行问题【分析】根据两直线平行的问题得到k=2,然后把(2,2)代入y=2x+b可计算出b的值【解答】解:直线y=kx+b与直线y=2x+1平行,k=2,把(

14、2,2)代入y=2x+b得2(2)+b=2,解得b=6故答案为6;【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同9如果一次函数y=(m2)x+m的函数值y随x的值增大而增大,那么m的取值范围是m2【考点】一次函数图象与系数的关系【分析】直接根据一次函数的增减性与系数的关系作答【解答】解:y随x的增大而增大,m20解得:m2,故答案为:m2;【点评】此题考查一次函数问题,关键是根据一次函数的增减性,来确定自变量系数的取值范围10关于x的方程a2x+x=1的

15、解是【考点】分式的混合运算;解一元一次方程【专题】计算题;分式;一次方程(组)及应用【分析】方程合并后,将x系数化为1,即可求出解【解答】解:方程合并得:(a2+1)x=1,解得:x=,故答案为:【点评】此题考查了分式的混合运算,以及解一元一次方程,熟练掌握运算法则是解本题的关键11方程的解为3【考点】无理方程【分析】首先把方程两边分别平方,然后解一元二次方程即可求出x的值【解答】解:两边平方得:2x+3=x2x22x3=0,解方程得:x1=3,x2=1,检验:当x1=3时,方程的左边=右边,所以x1=3为原方程的解,当x2=1时,原方程的左边右边,所以x2=1不是原方程的解故答案为3【点评】

16、本题主要考查解无理方程,关键在于首先把方程的两边平方,注意最后要把x的值代入原方程进行检验12如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,那么当y0时,自变量x的取值范围是x2【考点】一次函数图象上点的坐标特征;一次函数的性质【分析】直接根据直线与x轴的交点坐标即可得出结论【解答】解:由函数图象可知,直线与x轴的交点坐标为(2,0),当y0是,x2故答案为:x2【点评】本题考查的是一次函数图象上点的坐标特点,能利用函数图象直接得出x的取值范围是解答此题的关键132名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是【考点】列表法与树状图法【分析】首先根据题意

17、画出树状图,然后由树状图求得所有等可能的结果与恰好2名女生得到电影票的情况,再利用概率公式求解即可求得答案【解答】解:画树状图得:共有12种等可能的结果,恰好2名女生得到电影票的有2种情况,恰好2名女生得到电影票的概率是: =故答案为:【点评】此题考查了列表法或树状图法求概率的知识注意此题属于不放回实验,用到的知识点为:概率=所求情况数与总情况数之比14如果一个八边形的每一个内角都相等,那么它的一个内角的度数等于135度【考点】多边形内角与外角【分析】根据n边形的外角和为360得到正八边形的每个外角的度数3608=45,然后利用补角的定义即可得到正八边形的每个内角=18045=135【解答】解

18、:正八边形的外角和为360,正八边形的每个外角的度数=3608=45,正八边形的每个内角=18045=135故答案为:135【点评】本题考查了多边形内角与外角:n边形的内角和为(n2)180;n边形的外角和为36015在ABCD中,如果A+C=140,那么B=110度【考点】平行四边形的性质【分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案【解答】解:平行四边形ABCD,A+B=180,A=C,A+C=140,A=C=70,B=110故答案为:110【点评】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键16如图,在ABC中,点D、E分别是边AB、AC的

19、中点,已知DE=6cm,则BC=12cm【考点】三角形中位线定理【分析】三角形的中位线等于第三边的一半,那么第三边应等于中位线长的2倍【解答】解:ABC中,点D、E分别是边AB、AC的中点,DE是ABC的中位线,DE=6cm,BC=2DE=26=12cm故答案为12【点评】本题考查了三角形的中位线的性质:三角形的中位线等于第三边的一半17在梯形ABCD中,ADBC,AB=CD,ACBD如果AD=4,BC=10,那么梯形ABCD的面积等于49【考点】梯形【分析】首过D作DEAC交BC的延长线于E,过D作DFBC于F,先求出BDEE是等腰直角三角形推出DFF与BE的关系,进而根据梯形的面积公式即可

20、求解【解答】解:过D作DEAC交BC的延长线于E,过D作DFBC于FADCB,DEAC,四边形ADEC是平行四边形,DE=AC,AD=CE=4等腰梯形ABCD中,AB=CD,DE=AC=BD,ACBD,CEAD,DEBD,BDE是等腰直角三角形,又AD=4,BC=10,DF=BE=(AD+BC)=(4+10)=7,梯形的面积为:(4+10)7=49故答案为:49【点评】本题考查等腰梯形的性质,难度不大,注意在解题的过程中运算平行线的性质,另外要掌握等腰梯形的面积还等于对角线互相两条对角线乘积的一半18如图,在ABC中,AB=AC,点M、N分别在边AB、AC上,且MNAC将四边形BCNM沿直线M

21、N翻折,点B、C的对应点分别是点B、C,如果四边形ABBC是平行四边形,那么BAC=60度【考点】平行四边形的性质;等腰三角形的性质【分析】只要证明ABC是等边三角形即可解决问题【解答】解:如图,四边形MNCB是由四边形MNCB翻折得到,C=C,ABBC,C=BAC,C=BAC,AB=BC,AB=AC,AB=AC=BC,BAC=60,故答案为60【点评】本题考查平行四边形的性质、等腰三角形的性质、翻折变换等知识,解题的关键是证明ABC是等边三角形,属于中考常考题型三、计算题(本大题共8题,满分58分)19解方程:【考点】解分式方程【专题】计算题;分式方程及应用【分析】设=y,分式方程变形后,求

22、出解得到y的值,进而求出x的值,检验即可得到原分式方程的解【解答】解:设=y,则原方程可化为y1,解得 y1=2,y2=1,当y1=2时,得=2,解得:x1=2;当y2=1时,得=1,解得:x2=,经检验:x1=2,x2=是原方程的根,则原分式方程的根是x1=2,x2=【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验20解方程组:【考点】高次方程【分析】先把第二个方程进行因式分解,再把二元二次方程组转化为两个二元一次方程组,求解即可【解答】解:由,得 (x2y)2=9,即得 x2y=3,x2y=3,则原方程组可化为或,解这两个方程组,得或【点评】本题考查了高次方程的解法,解

23、题的基本思想是把二次方程转化为一次方程21已知:如图,在ABC中,设,(1)填空: =;(用、的式子表示)(2)在图中求作(不要求写出作法,只需写出结论即可)【考点】*平面向量【专题】作图题【分析】(1)根据图形可以直接写出等于什么,本题得以解决;(2)先画出图形,根据图形写出结论即可【解答】解:(1)由题可知, =,故答案为:;(2)如右图所示,结论:【点评】本题考查平面向量,解题的关键是明确平面向量的计算方法22已知直线y=kx+b经过点A(3,8),且与直线的公共点B的横坐标为6(1)求直线y=kx+b的表达式;(2)设直线y=kx+b与y轴的公共点为点C,求BOC的面积【考点】两条直线

24、相交或平行问题;待定系数法求一次函数解析式【专题】数形结合【分析】(1)先由已知直线求得点B的坐标,再根据待定系数法求得直线y=kx+b的表达式;(2)先根据求得的直线解析式,求得点C的坐标,再根据点C和点B的位置,计算BOC的面积【解答】解:(1)在直线中,由 x=6,得,点B(6,4),由直线y=kx+b经过点A、B,得解得 所求直线表达式为;(2)在直线中,当 x=0时,得 y=4,即C(0,4),由点B(6,4)、C(0,4),可得BOC的面积=46=12,BOC的面积为12【点评】本题主要考查了两直线相交或平行的问题,解决问题的关键是掌握待定系数法求一次函数解析式,解题时注意:求一次

25、函数y=kx+b,则需要两组x,y的值23已知:如图,在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE=DF(1)求AEF的度数;(2)如果AEB=75,AB=2,求FEC的面积【考点】正方形的性质【分析】(1)根据正方形的性质得到B=ADF=90,AD=AB,求出ADF,根据SAS即可推出答案,再利用全等三角形的性质解答即可;(2)设EC=x利用勾股定理计算即可【解答】解:(1)由正方形ABCD,得 AB=AD,B=ADF=BAD=90,在ABE和ADF中,ABEADF,BAE=FAD,AE=AFBAD=BAE+EAD=FAD+EAD=90即得EAF=90,又AE=AF,A

26、EF=AFE=45(2)AEB=75,AEF=45,BEF=120即得FEC=60,由正方形ABCD,得C=90EFC=30EF=2EC,设EC=x则 EF=2x,BE=DF=2x,CF=4x在RtCEF中,由勾股定理,得 CE2+CF2=EF2即得 x2+(4x)2=4x2解得,(不合题意,舍去), ,FEC的面积为【点评】本题主要考查对正方形的性质,全等三角形的性质和判定,勾股定理等知识点的理解和掌握是解此题的关键24某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时从学校出发已知先遣队每小时比大部队多行进1千米,预计比大部队早半小时到达目的地求先遣队与

27、大部队每小时各行进了多少千米【考点】分式方程的应用【分析】设先遣队每小时行进x千米,则大部队每小时行进(x1)千米;根据“先遣队和大队同时出发,预计比大部队早半小时到达”列分式方程解出即可【解答】解:设先遣队每小时行进x千米,则大部队每小时行进(x1)千米 根据题意,得解得 x1=6,x2=5 经检验:x1=6,x2=5是原方程的根,x2=5不合题意,舍去原方程的根为x=6x1=61=5答:先遣队与大部队每小时分别行进6千米和5千米【点评】本题是分式方程的应用,属于行程问题;有两个队:先遣队和大队;路程都是15千米,时间相差半小时,速度:先遣队每小时比大部队多行进1千米;根据速度的关系设未知数

28、,根据时间关系列方程,注意未知数的值有实际意义并检验25已知:如图,在ABCD中,E为边CD的中点,联结AE并延长,交边BC的延长线于点F(1)求证:四边形ACFD是平行四边形;(2)如果B+AFB=90,求证:四边形ACFD是菱形【考点】菱形的判定;平行四边形的判定与性质【专题】证明题【分析】(1)根据平行四边形的性质证出ADC=FCD,然后再证明ADEFCE可得AD=FC,根据一组对边平行且相等的四边形是平行四边形可得结论;(2)根据B+AFB=90可得BAF=90,根据平行四边形对边平行可得ABCD,利用平行线的性质可得CEF=BAF=90,再根据对角线互相垂直的平行四边形是菱形可得结论

29、【解答】证明:(1)在ABCD中,ADBFADC=FCDE为CD的中点,DE=CE在ADE和FCE中,ADEFCE(ASA)AD=FC又ADFC,四边形ACFD是平行四边形(2)在ABF中,B+AFB=90,BAF=90又四边形ABCD是平行四边形,ABCD,CEF=BAF=90,四边形ACDF是平行四边形,四边形ACDF是菱形【点评】此题主要考查了菱形的判定,平行四边形的判定和性质,关键是掌握平行四边形两组对边分别平行,对角线互相垂直的平行四边形是菱形26已知:如图,在梯形ABCD中,ADBC,ABBC,E是边AB的中点,联结DE、CE,且DECE设AD=x,BC=y(1)如果BCD=60,

30、求CD的长;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)联结BD如果BCD是以边CD为腰的等腰三角形,求x的值【考点】三角形综合题【分析】(1)首先过点D作DHBC,垂足为点H,由ADBC,ABBC,DHBC,可求得DH的长,然后设CH=x,则 CD=2x,利用勾股定理即可求得方程:x2+(2)2=4x2,解此方程即可求得答案;(2)首先取CD的中点F,连接EF,由梯形的中位线,可表示出EF的长,易得四边形ABHD是平行四边形,然后由勾股定理可得:(yx)2+12=(x+y)2,继而求得答案;(3)分别从CD=BD或CD=BC去分析求解即可求得答案【解答】解:(1)过点D作D

31、HBC,垂足为点HADBC,ABBC,DHBC,DH=AB=2,在RtDHC中,BCD=60,CDH=30CD=2CH,设CH=x,则 CD=2x利用勾股定理,得 CH2+DH2=CD2即得:x2+(2)2=4x2解得 x=2(负值舍去)CD=4;(2)取CD的中点F,连接EF,E为边AB的中点,EF=(AD+BC)=(x+y)DECE,DEC=90又DF=CF,CD=2EF=x+y由ABBC,DHBC,得B=DHC=90ABDH又AB=DH,四边形ABHD是平行四边形BH=AD=x即得 CH=|yx|,在RtDHC中,利用勾股定理,得 CH2+DH2=CD2即得 (yx)2+12=(x+y)

32、2解得,所求函数解析式为自变量x的取值范围是x0,且;(3)当BCD是以边CD为腰的等腰三角形时,有两种可能情况:CD=BD或CD=BC( i)如果CD=BD,由DHBC,得 BH=CH即得 y=2x利用,得解得,经检验:,且不合题意,舍去;( ii)如果CD=BC,则 x+y=y即得 x=0(不合题意,舍去),综上可得:【点评】此题属于四边形的综合题考查了梯形的性质、平行四边形的判定与性质、等腰三角形的性质以及勾股定理等知识注意掌握辅助线的作法,掌握方程思想与分类讨论思想的应用是解此题的关键八年级(下)期末数学试卷一、选择题(本大题共6题,每题2分,满分12分)【每题只有一个正确选项,在答题

33、纸相应位置填涂】1函数y=x+1的图象经过的象限是()A一、二、三B一、二、四C一、三、四D二、三、四2下列方程中,有实数解的是()A2x4+1=0B +3=0Cx2x+2=0D =3解方程=2时,如果设=y,则原方程可化为关于y的整式方程是()A3y2+2y+1=0B3y2+2y1=0C3y2+y+2=0D3y2+y2=04能判定四边形ABCD是平行四边形的条件是:A:B:C:D的值为()A1:2:3:4B1:4:2:3C1:2:2:1D1:2:1:25下列事件中,必然事件是()Ay=2x是一次函数By=x22是一次函数Cy=+1是一次函数Dy=kx+b(k、b是常数)是一次函数6已知:如图

34、,四边形ABCD是平行四边形,延长BA到点E,使AE=AB,联结ED、EC、AC添加一个条件,能使四边形ACDE成为矩形的是()AAC=CDBAB=ADCAD=AEDBC=CE二、填空题(本大题共12题,每小题3分,满分36分)请将结果直接填入答题纸的相应位置7直线y=3x2的截距是8函数f(x)=3x的自变量x的取值范围是9已知函数f(x)=2x1,那么f(1)=10直线y=3x+2向下平移1个单位后所得直线的表达式是11方程(x1)3=8的解为12方程的解是13如果一个凸多边形的内角和小于1620,那么这个多边形的边数最多是14小明和小杰做“剪刀、石头、布”游戏,在一个回合中两个人能分出胜

35、负的概率是15如图,已知梯形ABCD中,ADBC,点E在BC边上,AEDC,DC=AB如果图中的线段都是有向线段,则与相等的向量是16在ABC中,D、E分别是AB、AC的中点,F、G分别是DB、EC的中点,如果FG=3,那么BC=17如图,矩形ABCD中,点E在BC边上,点F在CD边上,AE平分BAF,且EFAF于点F若AB=5,AD=4,则EF=18如图,在ABC中,ABC=90,点D在AB边上,将ACD沿直线CD翻折后,点A落在点E处,如果四边形BCDE是平行四边形,那么ADC=三、解答题(本大题共7题,第19题-21题每题5分,第22题7分,第23题8分,第24题10分,第25题12分,

36、满分52分)请将解题过程填入答题纸的相应位置19解方程:=120解方程组:21如图,平面直角坐标系xOy中,点A(a,1)在双曲线上y=上,函数y=kx+b的图象经过点A,与y轴上交点B(0,2),(1)求直线AB的解析式;(2)设直线AB交x轴于点C,求三角形OAC的面积22如图,已知正方形ABCD的对角线AC、BD交于点O,CEAC与AD边的延长线交于点E(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求BCF的大小23如图,ABC中,AD是边BC上的中线,过点A作AEBC,过点D作DEAB,DE与AC、AE分别交于点O、点E,联结EC(1)求证:AD

37、=EC;(2)若BC=2AD,AB=AO=m,求证:S四边形ADCE=m2(其中S表示四边形ADCE的面积)24李老师准备网上在线学习,现有甲、乙两家网站供李老师选择,已知甲网站的收费方式是:月使用费7元,包时上网时间25小时,超时费每分钟0.01元; 乙网站的月收费方式如图所示设李老师每月上网的时间为x小时,甲、乙两家网站的月收费金额分别是y1、y2(1)请根据图象信息填空:乙网站的月使用费是元,超时费是每分钟元;(2)写出y1与x之间的函数关系;(3)李老师选择哪家网站在线学习比较合算?25已知,如图,平面直角坐标系xOy中,线段ABy轴,点B在x轴正半轴上,点A在第一象限,AB=10点P

38、是线段AB上的一动点,当点P在线段AB上从点A向点B开始运动时,点B同时在x轴上从点C(4,0)向点O运动,点P、点B运动的速度都是每秒1个单位,设运动的时间为t(0t4)(1)用含有t的式子表示点P的坐标;(2)当点P恰好在直线y=3x上时,求线段AP的长;(3)在(2)的条件下,直角坐标平面内是否存在点D,使以O、P、A、D为顶点的四边形是等腰梯形如果存在,请直接写出点D的坐标;如果不存在,请简单说明理由参考答案与试题解析一、选择题(本大题共6题,每题2分,满分12分)【每题只有一个正确选项,在答题纸相应位置填涂】1函数y=x+1的图象经过的象限是()A一、二、三B一、二、四C一、三、四D

39、二、三、四【考点】一次函数的图象【分析】先根据一次函数y=x+1中k=1,b=1判断出函数图象经过的象限即可【解答】解:一次函数y=x+1中k=10,b=10,此函数的图象经过一、二、四象限,故选B【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k0)中,当k0,b0时,函数图象经过一、二、四象限2下列方程中,有实数解的是()A2x4+1=0B +3=0Cx2x+2=0D =【考点】无理方程;根的判别式【专题】探究型【分析】可以分别判断各个选项中的方程是否有实数解,从而可以得到哪个选项是正确的【解答】解:2x4+1=0,2x4=1,x40,2x4+1=0无实数解;,无实数解;x2x

40、+2=0,=(1)2412=70,x2x+2=0无实数解;,解得x=,有实数解,故选D【点评】本题考查无理方程、根的判别式,解题的关键是明确方程有实数根需要满足的条件3解方程=2时,如果设=y,则原方程可化为关于y的整式方程是()A3y2+2y+1=0B3y2+2y1=0C3y2+y+2=0D3y2+y2=0【考点】换元法解分式方程【分析】把看作整体,与互为倒数,再得出方程即可【解答】解: =y,=,则原方程变形为3y=2,整理得3y2+2y1=0,故选B【点评】本题考查用换元法使分式方程简便换元后再在方程两边乘最简公分母可以把分式方程转化为整式方程应注意换元后的字母系数4能判定四边形ABCD

41、是平行四边形的条件是:A:B:C:D的值为()A1:2:3:4B1:4:2:3C1:2:2:1D1:2:1:2【考点】平行四边形的判定【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等只有选项D符合【解答】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件故选D【点评】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法5下列事件中,必然事件是()Ay=2x是一次函数By=x22是一次函数Cy=+1是一次函数Dy=kx+b(k、b是

42、常数)是一次函数【考点】随机事件【分析】根据事件发生的可能性大小判断相应事件的类型即可【解答】解:y=2x是一次函数是必然事件;y=x22是一次函数是不可能事件;y=+1是一次函数是不可能事件;y=kx+b(k、b是常数)是一次函数是随机事件,故选:A【点评】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件6已知:如图,四边形ABCD是平行四边形,延长BA到点E,使AE=AB,联结ED、EC、AC添加一个条件,能使四边形ACDE成为矩形的是()AA

43、C=CDBAB=ADCAD=AEDBC=CE【考点】矩形的判定;平行四边形的性质【分析】直接利用平行四边形的判定与性质得出四边形DEAC是平行四边形,进而利用等腰三角形的性质结合矩形的判定方法得出答案【解答】解:添加一个条件BC=CE,能使四边形ACDE成为矩形,理由:四边形ABCD是平行四边形,ABDC,AE=AB,DCAE,四边形DEAC是平行四边形,BC=EC,AE=AB,EAC=90,平行四边形ACDE是矩形故选:D【点评】此题主要考查了平行四边形的判定与性质、等腰三角形的性质、矩形的判定等知识,正确得出四边形DEAC是平行四边形是解题关键二、填空题(本大题共12题,每小题3分,满分3

44、6分)请将结果直接填入答题纸的相应位置7直线y=3x2的截距是2【考点】一次函数图象上点的坐标特征【分析】令x=0,求出y的值即可【解答】解:令x=0,则y=2故答案为:2【点评】本题考查的是一次函数图象上点的坐标特点,能熟练地根据一次函数的性质进行计算是解此题的关键8函数f(x)=3x的自变量x的取值范围是全体实数【考点】函数自变量的取值范围【分析】根据表达式是整式时,自变量可取全体实数解答【解答】解:x取全体实数函数表达式都有意义,自变量x的取值范围是全体实数故答案为:全体实数【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函

45、数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负9已知函数f(x)=2x1,那么f(1)=1【考点】函数值【分析】将x=1代入,然后依据有理数的运算法则进行计算即可【解答】解:f(1)=2(1)1=21=1故答案为:1【点评】本题主要考查的是求函数值,将x=1代入解析式是解题的关键10直线y=3x+2向下平移1个单位后所得直线的表达式是y=3x+1【考点】一次函数图象与几何变换【分析】直接根据“上加下减,左加右减”的原则进行解答即可【解答】解:由“上加下减”的原则可知,直线y=3x+2沿y轴向下平移1个单位,所得直线的函数关系式为y=3x+21,即y=3x

46、+1;故答案为y=3x+1【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键11方程(x1)3=8的解为x=1【考点】立方根【分析】把(x1)看作一个整体,利用立方根的定义解答即可【解答】解:(x1)3=8,x1=2,x=1故答案为:x=1【点评】本题考查了利用立方根的定义求未知数的值,熟记概念是解题的关键12方程的解是x=1【考点】无理方程【分析】把方程两边平方后求解,注意检验【解答】解:把方程两边平方得x+2=x2,整理得(x2)(x+1)=0,解得:x=2或1,经检验,x=1是原方程的解故本题答案为:x=1【点评】本题考查无理方程的求法,注意无理方程需验

47、根13如果一个凸多边形的内角和小于1620,那么这个多边形的边数最多是10【考点】多边形内角与外角【分析】多边形的内角和可以表示成(n2)180,已知一个多边形的内角和是1620,根据题意列方程求解【解答】解:设一个凸多边形的内角和等于1620多边形的边数是n,则(n2)180=1620,解得:n=11这个多边形的边数最多是10;故答案为:10【点评】此题主要考查了多边形内角和定理,结合多边形的内角和公式来寻求等量关系,构建方程求解是解题关键14小明和小杰做“剪刀、石头、布”游戏,在一个回合中两个人能分出胜负的概率是【考点】列表法与树状图法【专题】计算题【分析】先利用画树状图展示所有9种等可能

48、的结果数,再找出能分出胜负的结果数,然后根据概率公式求解【解答】解:画树状图为:共有9种等可能的结果数,其中能分出胜负的结果数为6,所以能分出胜负的概率=故答案为【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率15如图,已知梯形ABCD中,ADBC,点E在BC边上,AEDC,DC=AB如果图中的线段都是有向线段,则与相等的向量是【考点】*平面向量;梯形【分析】根据题意判定四边形AECD是平行四边形,则AEDC且AE=DC,所以与相等的向量是【解答】解:在梯形ABCD中,ADBC,ADE

49、C,又AEDC,四边形AECD是平行四边形,AEDC且AE=DC,与相等的向量是故答案是:【点评】本题考查了平面向量和梯形注意:向量是有方向的线段,相等的向量是指方向和距离都相等的线段16在ABC中,D、E分别是AB、AC的中点,F、G分别是DB、EC的中点,如果FG=3,那么BC=4【考点】三角形中位线定理【分析】设BC=2x,根据三角形的中位线平行于第三边并且等于第三边的一半表示出DE,再根据梯形的中位线平行于两底边并且等于两底和的一半列方程求解即可【解答】解:设BC=2x,D、E分别是AB、AC的中点,DE是ABC的中位线,DEBC且DE=BC=x,四边形BCED是梯形,F、G分别是DB

50、、EC的中点,FG是梯形BCED的中位线,FG=(DE+BC),FG=3,(x+2x)=3,解得x=2,2x=22=4,即BC=4故答案为:4【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,梯形的中位线平行于两底边并且等于两底和的一半,熟练掌握两个定理是解题的关键17如图,矩形ABCD中,点E在BC边上,点F在CD边上,AE平分BAF,且EFAF于点F若AB=5,AD=4,则EF=【考点】矩形的性质;角平分线的性质;勾股定理【专题】方程思想【分析】先判定RtABERtAFE(HL),再根据勾股定理求得DF的长,最后设EF=EB=x,在RtCEF中根据勾股定理列出方程求解即可【

51、解答】解:AE平分BAF,且EFAF,B=90EF=EB在RtABE和RtAFE中RtABERtAFE(HL)AF=AB=5又AD=4,D=90RtADE中,DF=3CF=53=2设EF=EB=x,则CE=4x在RtCEF中,22+(4x)2=x2解得x=即EF=故答案为:【点评】本题主要考查了矩形的性质,解题时注意:矩形的对边相等,四个角都是直角,这是运用勾股定理的前提条件根据勾股定理列方程求解,是解决问题的关键18如图,在ABC中,ABC=90,点D在AB边上,将ACD沿直线CD翻折后,点A落在点E处,如果四边形BCDE是平行四边形,那么ADC=135【考点】平行四边形的性质【分析】延长C

52、D到点F,根据平行四边形的性质可得出BCDE,结合ABC=90,即可得出ADE=90,再根据翻折的性质即可得出ADF=EDF=45,从而得出BDC=45,由ADC、BDC互补即可得出结论【解答】解:延长CD到点F,如图所示四边形BCDE是平行四边形,BCDE,ABC=90,BDE=90,ADE=90将ACD沿直线CD翻折后,点A落在点E处,ADF=EDF=ADE=45,BDC=ADF=45,ADC=180BDC=135故答案为:135【点评】本题考查了平行四边形的性质,解题的关键是求出BDC=45本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等的角是关键三、解答题(本大题共

53、7题,第19题-21题每题5分,第22题7分,第23题8分,第24题10分,第25题12分,满分52分)请将解题过程填入答题纸的相应位置19解方程:=1【考点】解分式方程【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可【解答】解:去分母得,x+24=x24,移项、合并同类项得,x2x2=0,解得x1=2,x2=1,经检验x=2是增根,舍去;x=1是原方程的根,所以原方程的根是x=1【点评】本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根20解方程组:【考点】高次方程【专题】方程与不等式【分析】先

54、将原方程组进行变形,利用代入法和换元法可以解答本题【解答】解:,由,得,将代入,得,设x2=t,则,即t210t+9=0,解得,t=1或t=9,x2=1或x2=9,解得x=1或x=3,则或或或,即原方程组的解是:或或或【点评】本题考查高次方程,解题的关键是明确解高次方程的方法,尤其是注意换元法的应用21如图,平面直角坐标系xOy中,点A(a,1)在双曲线上y=上,函数y=kx+b的图象经过点A,与y轴上交点B(0,2),(1)求直线AB的解析式;(2)设直线AB交x轴于点C,求三角形OAC的面积【考点】反比例函数与一次函数的交点问题【分析】(1)把A点坐标代入双曲线解析式可求得a的值,再利用待

55、定系数法可求得直线AB的解析式;(2)由直线AB的解析式可求得C点坐标,从而可求得OC的长,过A作AHx轴于点H,则可求得AH的长,从而可求得AOC的面积【解答】解:(1)将A(a,1)代入y=,得A(3,1),设直线AB解析式为y=kx+b,将A(3,1)B(0,2)代入可得,解得,直线AB解析式为y=x2;(2)如图,过点A作AHOC,A(3,1),AH=1,在y=x2中,令y=0可得x=2,C(2,0),OC=2,SOAC=OCAH=21=1【点评】本题主要考查函数图象的交点,掌握函数图象的交点满足每一个函数解析式是解题的关键22如图,已知正方形ABCD的对角线AC、BD交于点O,CEA

56、C与AD边的延长线交于点E(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求BCF的大小【考点】正方形的性质;平行四边形的判定与性质【分析】(1)利用正方形的性质得出ACDB,BCAD,再利用平行线的判定与性质结合平行四边形的判定方法得出答案;(2)利用正方形的性质结合直角三角形的性质得出OFC=30,即可得出答案【解答】(1)证明:四边形ABCD是正方形,ACDB,BCAD,CEAC,AOD=ACE=90,BDCE,四边形BCED是平行四边形;(2)解:连接AF,四边形ABCD是正方形,BDAC,BD=AC=2OB=2OC,即OB=OC,OCB=45,R

57、tOCF中,CF=BD=2OC,OFC=30,BCF=6045=15【点评】此题主要考查了正方形的性质以及平行四边形的判定和直角三角形的性质,正确应用正方形的性质是解题关键23如图,ABC中,AD是边BC上的中线,过点A作AEBC,过点D作DEAB,DE与AC、AE分别交于点O、点E,联结EC(1)求证:AD=EC;(2)若BC=2AD,AB=AO=m,求证:S四边形ADCE=m2(其中S表示四边形ADCE的面积)【考点】菱形的判定与性质;平行四边形的判定与性质【分析】(1)由AEBC,DEAB,可证得四边形ABDE为平行四边形,又由AD是边BC上的中线,可得AE=CD,即可证得四边形ADCE 是平行四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论