版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若,则的取值范围是( )ABCD2已知等差数列的前n项和为,且,则( )A4B8C16D23已知双曲线的一条渐近线方程为,则双曲线的离心率为( )ABCD4已知的
2、共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限5已知函数是上的偶函数,且当时,函数是单调递减函数,则,的大小关系是( )ABCD6已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,则球的表面积为( )ABCD7已知函数,关于x的方程f(x)a存在四个不同实数根,则实数a的取值范围是( )A(0,1)(1,e)BCD(0,1)8已知,函数,若函数恰有三个零点,则( )ABCD9一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为( )ABCD10一个空间几何体的正视图是长为
3、4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )ABCD11已知函数是上的偶函数,是的奇函数,且,则的值为( )ABCD12如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列满足,且恒成立,则的值为_.14过点,且圆心在直线上的圆的半径为_15在四面体中, 分别是的中点则下述结论:四面体的体积为;异面直线所成角的正弦值为;四面体外接球的表面积为;若用一个与直线垂直,且
4、与四面体的每个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为其中正确的有_(填写所有正确结论的编号)16已知,且,则的最小值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,直线的参数方程为(为参数),直线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.()求的极坐标方程和的直角坐标方程;()设分别交于两点(与原点不重合),求的最小值.18(12分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;记数表M中位于第i行第j列的元
5、素为,其中,(i,j=1,2,3,).记数表中位于第i行第j列的元素为,其中(,).如:,.(1)设,请计算,;(2)设,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;(3)设,对于整数t,t不属于数表M,求t的最大值.19(12分)已知是抛物线的焦点,点在轴上,为坐标原点,且满足,经过点且垂直于轴的直线与抛物线交于、两点,且.(1)求抛物线的方程;(2)直线与抛物线交于、两点,若,求点到直线的最大距离.20(12分)运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择,它们的速度分别为60千米/小时、120千米/小时、600千米/小时,每千米的运费分别为
6、20元、10元、50元.这批海鲜在运输过程中每小时的损耗为m元(),运输的路程为S(千米).设用汽车、火车、飞机三种运输工具运输时各自的总费用(包括运费和损耗费)分别为(元)、(元)、(元).(1)请分别写出、的表达式;(2)试确定使用哪种运输工具总费用最省.21(12分)如图,四棱锥中,侧面为等腰直角三角形,平面(1)求证:平面;(2)求直线与平面所成的角的正弦值22(10分)已知矩阵,.求矩阵;求矩阵的特征值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】对分类讨论,代入解析式求出,解不等式,即可求解.【详解】函数
7、,由得或解得.故选:B.【点睛】本题考查利用分段函数性质解不等式,属于基础题.2A【解析】利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.3B【解析】由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.4D【解析】设,整理得到方程组,解方程组即可解决问题【详解】设,因为,所以,所以,解得:,所以复数在复平面内对应的点
8、为,此点位于第四象限.故选D【点睛】本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题5D【解析】利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【详解】因为,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.6D【解析】由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解.【详解】由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得
9、此六棱锥为正六棱锥,又由,所以, 在直角中,因为,所以,设外接球的半径为,在中,可得,即,解得,所以外接球的表面积为.故选:D.【点睛】本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.7D【解析】原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【详解】由题意,a2,令t,则f(x)a记g(t)当t2时,g(t)2ln(t)(t)单调递减,且g(2)2,又g(2)2,只需g(t)2在(2,+)上有两个不等于2的不等根则,记h(t
10、)(t2且t2),则h(t)令(t),则(t)2(2)2,(t)在(2,2)大于2,在(2,+)上小于2h(t)在(2,2)上大于2,在(2,+)上小于2,则h(t)在(2,2)上单调递增,在(2,+)上单调递减由,可得,即a2实数a的取值范围是(2,2)故选:D【点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.8C【解析】当时,最多一个零点;当时,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得【详解】当时,得;最多一个零点;当时,当,即时,在,上递增,最多一个零点不合题意;当,即时,令得,函数递增,令得,函数递减;函数最多有
11、2个零点;根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,解得,故选【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.9A【解析】将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可【详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,四面体所有棱长都是4,正方体的棱长为,设球的半径为,则,解得,所以,故选:A【点睛】本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,
12、属于中档题10B【解析】由三视图确定原几何体是正三棱柱,由此可求得体积【详解】由题意原几何体是正三棱柱,故选:B【点睛】本题考查三视图,考查棱柱的体积解题关键是由三视图不愿出原几何体11B【解析】根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,而函数是上的偶函数,故为周期函数,且周期为故选:B【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.12D【解析】先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.【详解】设四个支点所在球的小圆的圆心为,球心为,由题意,球的体积为,即可得球的半径为1,又
13、由边长为的正方形硬纸,可得圆的半径为,利用球的性质可得,又由到底面的距离即为侧面三角形的高,其中高为,所以球心到底面的距离为.故选:D.【点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】易得,所以是等差数列,再利用等差数列的通项公式计算即可.【详解】由已知,因,所以,所以数列是以为首项,3为公差的等差数列,故,所以.故答案为:【点睛】本题考查由递推数列求数列中的某项,考查学生等价转化的能力,是一道容易题.14【解析】根据弦的垂直平分线经过圆心,结合圆心所在直线方
14、程,即可求得圆心坐标.由两点间距离公式,即可得半径.【详解】因为圆经过点则直线的斜率为 所以与直线垂直的方程斜率为点的中点坐标为所以由点斜式可得直线垂直平分线的方程为,化简可得而弦的垂直平分线经过圆心,且圆心在直线上,设圆心所以圆心满足解得所以圆心坐标为则圆的半径为 故答案为: 【点睛】本题考查了直线垂直时的斜率关系,直线与直线交点的求法,直线与圆的位置关系,圆的半径的求法,属于基础题.15【解析】补图成长方体,在长方体中利用割补法求四面体的体积,和外接球的表面积,以及异面直线的夹角,作出截面即可计算截面面积的最值.【详解】根据四面体特征,可以补图成长方体设其边长为,解得补成长,宽,高分别为的
15、长方体,在长方体中:四面体的体积为,故正确异面直线所成角的正弦值等价于边长为的矩形的对角线夹角正弦值,可得正弦值为,故错;四面体外接球就是长方体的外接球,半径,其表面积为,故正确;由于,故截面为平行四边形,可得,设异面直线与所成的角为,则,算得,故正确故答案为:【点睛】此题考查根据几何体求体积,外接球的表面积,异面直线夹角和截面面积最值,关键在于熟练掌握点线面位置关系的处理方法,补图法作为解决体积和外接球问题的常用方法,平常需要积累常见几何体的补图方法.161【解析】先将前两项利用基本不等式去掉,再处理只含的算式即可【详解】解:,因为,所以,所以,当且仅当,时等号成立,故答案为:1【点睛】本题
16、主要考查基本不等式的应用,但是由于有3个变量,导致该题不易找到思路,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()直线的极坐标方程为,直线的极坐标方程为,的直角坐标方程为;()2.【解析】()由定义可直接写出直线的极坐标方程,对曲线同乘可得:,转化成直角坐标为;()分别联立两直线和曲线的方程,由得,由得,则,结合三角函数即可求解;【详解】()直线的极坐标方程为,直线的极坐标方程为由曲线的极坐标方程得,所以的直角坐标方程为.()与的极坐标方程联立得所以.与的极坐标方程联立得所以.所以.所以当时,取最小值2.【点睛】本题考查参数方程与极坐标方程的互化,极坐标方程与
17、直角坐标方程的互化,极坐标中的几何意义,属于中档题18(1)(2)详见解析(3)29【解析】(1)将,代入,可求出,可代入求,可求结果(2)可求,通过反证法证明,(3)可推出,的最大值,就是集合中元素的最大值,求出【详解】(1)由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,则,得,故(2)证明:已知,由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,得,所以若,则存在,使,若,则存在,使,因此,对于正整数,考虑集合,即,下面证明:集合中至少有一元素是7的倍数反证法:假设集合中任何一个元素,都不是7的倍数,则集合中每一元素关于7的余数可以为1,2,3,4,5,6,又因为集
18、合中共有7个元素,所以集合中至少存在两个元素关于7的余数相同,不妨设为,其中,则这两个元素的差为7的倍数,即,所以,与矛盾,所以假设不成立,即原命题成立即集合中至少有一元素是7的倍数,不妨设该元素为,则存在,使,即,由已证可知,若,则存在,使,而,所以为负整数,设,则,且,所以,当,时,对于整数,若,则成立(3)下面用反证法证明:若对于整数,则,假设命题不成立,即,且则对于整数,存在,使成立,整理,得,又因为,所以且是7的倍数,因为,所以,所以矛盾,即假设不成立所以对于整数,若,则,又由第二问,对于整数,则,所以的最大值,就是集合中元素的最大值,又因为,所以【点睛】本题考查数列的综合应用,以及
19、反证法,求最值,属于难题19(1);(2).【解析】(1)求得点的坐标,可得出直线的方程,与抛物线的方程联立,结合求出正实数的值,进而可得出抛物线的方程;(2)设点,设的方程为,将直线的方程与抛物线的方程联立,列出韦达定理,结合求得的值,可得出直线所过定点的坐标,由此可得出点到直线的最大距离.【详解】(1)易知点,又,所以点,则直线的方程为.联立,解得或,所以.故抛物线的方程为;(2)设的方程为,联立有,设点,则,所以.所以,解得.所以直线的方程为,恒过点.又点,故当直线与轴垂直时,点到直线的最大距离为.【点睛】本题考查抛物线方程的求解,同时也考查了抛物线中最值问题的求解,涉及韦达定理设而不求法的应用,考查运算求解能力,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 皮革制品行业的市场调查与消费需求分析考核试卷
- 海水养殖的食品安全控制考核试卷
- 创业空间的共享单车企业项目考核试卷
- 医药制造业危险废物处理方案考核试卷
- 废弃资源综合利用的供需平衡与市场竞争分析考核试卷
- 印刷行业的安全与环境保护考核试卷
- 构建安全企业推进安全生产培训考核试卷
- 城市公共设施管理的城市发展案例研究考核试卷
- DB11T 765.3-2010 档案数字化规范 第3部分:微缩胶片档案数字化加工
- 教学课件获奖教学课件
- 护士注册健康体检表下载【可直接打印版本】
- 层次分析法课件
- 云南民族历史文化课件
- 超声引导下臂丛神经阻滞 课件
- 优秀员工荣誉证书模板
- 市场营销英语 全册课件
- 幼儿教育政策法规解读-高职-学前教育专业课件
- 伤口拍照要求及换药技术-课件
- 产品留样观察记录
- 新外研版八年级下册英语 Module 6 Unit 1 教案(教学设计)
- 《采用合理的论证方法》课件-统编版高中语文选择性必修上册
评论
0/150
提交评论