版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知满足,则的取值范围为( )ABCD2已知中,则( )A1BCD3双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为( )ABCD4已知集合,定义集合,则等于( )ABC
2、D5在中,在边上满足,为的中点,则( ).ABCD6某几何体的三视图如图所示,则该几何体的体积为( )AB3CD47若为纯虚数,则z( )AB6iCD208已知集合,集合,那么等于( )ABCD9若,则, , , 的大小关系为( )ABCD10古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为 ABCD11已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,则的面积为( )ABCD12在一个数列中,如果,都有(为常
3、数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,公积为,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知为正实数,且,则的最小值为_.14已知是第二象限角,且,则_.15如图所示,在直角梯形中,、分别是、上的点,且(如图).将四边形沿折起,连接、(如图).在折起的过程中,则下列表述: 平面;四点、可能共面;若,则平面平面;平面与平面可能垂直.其中正确的是_.16已知函数,令,若,表示不超过实数的最大整数,记数列的前项和为,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知()过点,且当时,函数取得最大值1.(
4、1)将函数的图象向右平移个单位得到函数,求函数的表达式;(2)在(1)的条件下,函数,求在上的值域.18(12分)已知函数,()当时,证明;()已知点,点,设函数,当时,试判断的零点个数19(12分)已知多面体中,、均垂直于平面,是的中点(1)求证:平面;(2)求直线与平面所成角的正弦值20(12分)已知,.(1)求的值;(2)求的值.21(12分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.组别频数(1)由频数分布表可以大致认为,此次问卷调查的
5、得分似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:,若,则,22(10分)已知抛物线,直线与交于,两点,且.(1)求的值;(2)如图,过原点的直线与抛物线交于点,与直线交于点,过点作轴的垂线交抛物线于点,证明:直线过定点.参考答案一、选择题:本
6、题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,此时;故的取值范围为;故选:C.【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键对于直线斜率要注意斜率不存在的直线是否存在2C【解析】以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【详解】,.故选:C.【点
7、睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.3B【解析】首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程.【详解】设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得,所以渐近线方程为,即为,故选:B【点睛】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.4C【解析】根据定义,求出,即可求出结论.【详解】因为集合,所以,则,所以.故选:C.【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.5B【解析】由,可得,再将代入即可.【详解】因为,所以,故.故选:B.
8、【点睛】本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题.6C【解析】首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为几何体为:该几何体为由一个三棱柱体,切去一个三棱锥体,如图所示:故:.故选:C.【点睛】本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.7C【解析】根据复数的乘法运算以及纯虚数的概念,可得结果.【详解】 为纯虚数,且得,此时故选:C.【点睛】本题考查复数的概念与运算,属基础题.8A【解析】求出集合,然后进行并
9、集的运算即可.【详解】,.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.9D【解析】因为,所以,因为,所以,.综上;故选D.10B【解析】推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,基本事件总数,6和28恰好在同一组包含的基本事件个数,6和28恰好在同一组的概率故选:B【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题11A【解析】根据可知,再利用抛物
10、线的焦半径公式以及三角形面积公式求解即可.【详解】由题意可知抛物线方程为,设点点,则由抛物线定义知,则.由得,则.又MN为过焦点的弦,所以,则,所以.故选:A【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.12B【解析】计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【详解】由题意可知,则对任意的,则,由,得,因此,.故选:B.【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】,所以有,再利用基本不等式求最值即可.【详解】由已知,所以
11、,当且仅当,即时,等号成立.故答案为:【点睛】本题考查利用基本不等式求和的最小值问题,采用的是“1”的替换,也可以消元等,是一道中档题.14【解析】由是第二象限角,且,可得,由及两角和的正切公式可得的值.【详解】解:由是第二象限角,且,可得,由,可得,代入,可得,故答案为:.【点睛】本题主要考查同角三角函数的基本关系及两角和的正切公式,相对不难,注意运算的准确性.15【解析】连接、交于点,取的中点,证明四边形为平行四边形,可判断命题的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题的正误;假设平面与平面垂直,利用面面垂直
12、的性质定理可判断命题的正误.综合可得出结论.【详解】对于命题,连接、交于点,取的中点、,连接、,如下图所示:则且,四边形是矩形,且,为的中点,为的中点,且,且,四边形为平行四边形,即,平面,平面,平面,命题正确;对于命题,平面,平面,平面,若四点、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得,则,但四边形为梯形且、为两腰,与相交,矛盾.所以,命题错误;对于命题,连接、,设,则,在中,则为等腰直角三角形,且,且,由余弦定理得,又,平面,平面,、为平面内的两条相交直线,所以,平面,平面,平面平面,命题正确;对于命题,假设平面与平面垂直,过点在平面内作,平面平面,平面平面,平面,
13、平面,平面,又,平面,平面,.,平面,平面,.,显然与不垂直,命题错误.故答案为:.【点睛】本题考查立体几何综合问题,涉及线面平行、面面垂直的证明、以及点共面的判断,考查推理能力,属于中等题.164【解析】根据导数的运算,结合数列的通项公式的求法,求得,进而得到,再利用放缩法和取整函数的定义,即可求解.【详解】由题意,函数,且,可得,又由,可得为常数列,且,数列表示首项为4,公差为2的等差数列,所以,其中数列满足,所以,所以,又由,可得数列的前n项和为,数列的前n项和为,所以数列的前项和为,满足,所以,即,又由表示不超过实数的最大整数,所以.故答案为:4.【点睛】本题主要考查了函数的导数的计算
14、,以及等差数列的通项公式,累加法求解数列的通项公式,以及裂项法求数列的和的综合应用,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1);(2).【解析】试题分析:(1)由题意可得函数f(x)的解析式为,则.(2)整理函数h(x)的解析式可得:,结合函数的定义域可得函数的值域为.试题解析:(1)由函数取得最大值1,可得,函数过得,.(2) ,值域为.18()详见解析;()1.【解析】()令,;则易得,即可证明;(),分, , 当时,讨论的零点个数即可【详解】解:( )令,;则令,易得在递减,在递增, ,在恒成立 在递减,在
15、递增 ;( ) 点,点, , 当时,可知, , 在单调递增, 在上有一个零点, 当时, ,在恒成立, 在无零点 当时, 在单调递减, 在存在一个零点综上,的零点个数为1【点睛】本题考查了利用导数解决函数零点问题,考查了分类讨论思想,属于压轴题19(1)见解析;(2)【解析】(1)取的中点,连接、,推导出四边形为平行四边形,可得出,由此能证明平面;(2)由,得平面,则点到平面的距离等于点到平面的距离,在平面内过点作于点,就是到平面的距离,也就是点到平面的距离,由此能求出直线与平面所成角的正弦值【详解】(1)取的中点,连接、,、分别为、的中点,则且,、均垂直于平面,且,则,且,所以,四边形为平行四
16、边形,则,平面,平面,因此,平面;(2)由,平面,平面,平面,点到平面的距离等于点到平面的距离,在平面内过点作于点,平面,平面,平面,即就是到平面的距离,也就是点到平面的距离,设,则到平面的距离,因此,直线与平面所成角的正弦值为【点睛】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题20(1)(2)【解析】(1)先利用同角的三角函数关系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【详解】解:(1)因为,所以又,故,所以,所以(2)由(1)得,所以,所以,因为且,即,解得,因为,所以,所以,所以,所以【点睛】本题考查已知三角函数值求值,考查三角函数的化简,考查和角公式,二倍角公式,同角的三角函数关系的应用,考查运算能力.21(1)(2)详见解析【解析】由题意,根据平均数公式求得,再根据,参照数据求解.由题意得,获赠话费的可能取值为,求得相应的概率,列出分布列求期望.【详解】由题意得综上,由题意得,获赠话费的可能取值为,的分布列为:【点睛】本题主要考查正态分布和离散型随机变量的分布列及期望,还考查了运算求解的能力,属于中档题.22(1);(2)见解析【解析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度养殖场废弃物综合利用合同书人3篇
- 二零二五年度历史文化景区承包经营权交接合同3篇
- 2025年度渔业养殖与农产品市场拓展合作合同3篇
- 2025年度兼职销售员权益保障与服务合同3篇
- 2024年中国环保通风柜市场调查研究报告
- 2025年度毛石质量争议解决服务合同2篇
- 2025年度混凝土班组施工日志记录合同3篇
- 2025年度架子工分包工程合作协议2篇
- 2024年中国氟塑料合金自吸耐腐泵市场调查研究报告
- 2025年度果园转租经营合同2篇
- 原料药FDA现场GMP符合性要求与检查实践课件
- 2022阀门制造作业指导书
- 科技创新社团活动教案课程
- 部编版语文六年级上册作文总复习课件
- 氨碱法纯碱生产工艺概述
- 基础化工行业深度:电解液新型锂盐材料之双氟磺酰亚胺锂(LiFSI)市场潜力可观新型锂盐LiFSI国产化进程加速
- 年产10000吨一次性自然降解环保纸浆模塑餐具自动化生产线技改项目环境影响报告表
- 实战销售培训讲座(共98页).ppt
- 测控电路第7章信号细分与辨向电路
- 哈尔滨工业大学信纸模版
- 氨的饱和蒸汽压表
评论
0/150
提交评论