2022届山西太原师范学院高三压轴卷数学试卷含解析_第1页
2022届山西太原师范学院高三压轴卷数学试卷含解析_第2页
2022届山西太原师范学院高三压轴卷数学试卷含解析_第3页
2022届山西太原师范学院高三压轴卷数学试卷含解析_第4页
2022届山西太原师范学院高三压轴卷数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球

2、,在能盖住盖子的情况下,最多能装( )(附:)A个B个C个D个2如图,在正方体中,已知、分别是线段上的点,且.则下列直线与平面平行的是( )ABCD3下列与函数定义域和单调性都相同的函数是( )ABCD4执行下面的程序框图,则输出的值为 ( )ABCD5使得的展开式中含有常数项的最小的n为( )ABCD6已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为( )AB3CD7过抛物线的焦点的直线交该抛物线于,两点,为坐标原点.若,则直线的斜率为( )ABCD8已知函数()的部分图象如图所示,且,则的最小值为( )ABCD9若直线与圆相交所得弦长为,则( )A

3、1B2CD310将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )ABCD11已知为等比数列,则( )A9B9CD12若实数、满足,则的最小值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为_14直线是曲线的一条切线为自然对数的底数),则实数_.15已知集合U1,3,5,9,A1,3,9,B1,9,则U(AB)_.16在平面直角坐标系中,曲线上任意一点到直

4、线的距离的最小值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四棱锥中,平面平面,若,四边形是平行四边形,且.()求证:;()若点在线段上,且平面,求二面角的余弦值.18(12分)已知.(1)解关于x的不等式:;(2)若的最小值为M,且,求证:.19(12分)如图,是矩形,的顶点在边上,点,分别是,上的动点(的长度满足需求).设,且满足.(1)求;(2)若,求的最大值.20(12分)某贫困地区几个丘陵的外围有两条相互垂直的直线型公路,以及铁路线上的一条应开凿的直线穿山隧道,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路, 以所

5、在的直线分别为轴,轴, 建立平面直角坐标系, 如图所示, 山区边界曲线为,设公路与曲线相切于点,的横坐标为.(1)当为何值时,公路的长度最短?求出最短长度;(2)当公路的长度最短时,设公路交轴,轴分别为,两点,并测得四边形中,千米,千米,求应开凿的隧道的长度.21(12分)如图,在三棱柱中,已知四边形为矩形,的角平分线交于.(1)求证:平面平面;(2)求二面角的余弦值.22(10分)在四棱锥中,底面为直角梯形,面.(1)在线段上是否存在点,使面,说明理由;(2)求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【

6、解析】计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切,这样,相邻的四个球的球心连线构成棱长为cm的正面体,易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,则最上层球面上的点距离桶底最远为cm,若想要盖上盖子,则需要满足,解得,所以最多可以装层球,即最多可以装个球故选:【点睛】本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.2B【解析】连接,使交于点,连接、,可证四边形为平行四边形,可得,利用线面平行的判定定理即可

7、得解【详解】如图,连接,使交于点,连接、,则为的中点,在正方体中,且,则四边形为平行四边形,且,、分别为、的中点,且,所以,四边形为平行四边形,则,平面,平面,因此,平面.故选:B.【点睛】本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题3C【解析】分析函数的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项.【详解】函数的定义域为,在上为减函数.A选项,的定义域为,在上为增函数,不符合.B选项,的定义域为,不符合.C选项,的定义域为,在上为减函数,符合.D选项,的定义域为,不符合.故选:C【点睛】本小题主要考查函数的定义域和单调性,属于基础题.

8、4D【解析】根据框图,模拟程序运行,即可求出答案.【详解】运行程序,结束循环,故输出,故选:D.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.5B【解析】二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B【考点定位】本题考查二项式定理的应用6B【解析】根据题意,求得函数周期,利用周期性和函数值,即可求得.【详解】由已知可知,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【点睛】本题考查函数周期的求解,涉及对数运算,属综合基础题.7D【解析】根据抛物线的定义,结合,求出的坐标,然后求出的斜率即可【详解】解:抛物线的焦点,准

9、线方程为,设,则,故,此时,即则直线的斜率故选:D【点睛】本题考查了抛物线的定义,直线斜率公式,属于中档题8A【解析】是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得【详解】由题意,函数在轴右边的第一个零点为,在轴左边第一个零点是,的最小值是故选:A.【点睛】本题考查三角函数的周期性,考查函数的对称性函数的零点就是其图象对称中心的横坐标9A【解析】将圆的方程化简成标准方程,再根据垂径定理求解即可.【详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.故选:A【点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.10B【解析】设折成的四

10、棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B11C【解析】根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【详解】,又,可解得或设等比数列的公比为,则当时, ;当时, ,.故选:C【点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.12D【解析】根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故

11、选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题二、填空题:本题共4小题,每小题5分,共20分。13【解析】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,根据正四棱锥的侧面积求出的值,再利用勾股定理求得正四棱锥的高,代入体积公式,即可得到答案.【详解】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,.故答案为:.【点睛】本题考查棱锥的侧面积和体积,考查函数与方程思想、转化与化归思想,考查运算求解能力.14【解析】根据切线的斜率为,利用导数列方程,由此求得切点的坐标,进而求得切线方程,通过对比系数求得的值.【详解】,则,所以切点为,故切线为,即,故.故答

12、案为:【点睛】本小题主要考查利用导数求解曲线的切线方程有关问题,属于基础题.155【解析】易得ABA1,3,9,则U(AB)516【解析】解法一:曲线上任取一点,利用基本不等式可求出该点到直线的距离的最小值;解法二:曲线函数解析式为,由求出切点坐标,再计算出切点到直线的距离即可所求答案.【详解】解法一(基本不等式):在曲线上任取一点,该点到直线的距离为,当且仅当时,即当时,等号成立,因此,曲线上任意一点到直线距离的最小值为;解法二(导数法):曲线的函数解析式为,则,设过曲线上任意一点的切线与直线平行,则,解得,当时,到直线的距离;当时,到直线的距离.所以曲线上任意一点到直线的距离的最小值为.故

13、答案为:.【点睛】本题考查曲线上一点到直线距离最小值的计算,可转化为利用切线与直线平行来找出切点,转化为切点到直线的距离,也可以设曲线上的动点坐标,利用基本不等式法或函数的最值进行求解,考查分析问题和解决问题的能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()见解析()【解析】()推导出BCCE,从而EC平面ABCD,进而ECBD,再由BDAE,得BD平面AEC,从而BDAC,进而四边形ABCD是菱形,由此能证明AB=AD.()设AC与BD的交点为G,推导出EC/ FG,取BC的中点为O,连结OD,则ODBC,以O为坐标原点,以过点O且与CE平行的直线为x

14、轴,以BC为y轴,OD为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BF-D的余弦值.【详解】()证明:,即,因为平面平面,所以平面,所以,因为,所以平面,所以,因为四边形是平行四边形,所以四边形是菱形,故;解法一:()设与的交点为,因为平面,平面平面于,所以,因为是中点,所以是的中点,因为,取的中点为,连接,则,因为平面平面,所以面,以为坐标原点,以过点且与平行的直线为轴,以所在直线为轴,以所在直线为轴建立空间直角坐标系.不妨设,则,设平面的法向量,则,取,同理可得平面的法向量,设平面与平面的夹角为,因为,所以二面角的余弦值为.解法二:()设与的交点为,因为平面,平面平面于,所以,因

15、为是中点,所以是的中点,因为,所以平面,所以,取中点,连接、,因为,所以,故平面,所以,即是二面角的平面角,不妨设,因为,在中,所以,所以二面角的余弦值为.【点睛】本题考查求空间角中的二面角的余弦值,还考查由空间中线面关系进而证明线线相等,属于中档题.18(1);(2)证明见解析.【解析】(1)分类讨论求解绝对值不等式即可;(2)由(1)中所得函数,求得最小值,再利用均值不等式即可证明.【详解】(1)当时,等价于,该不等式恒成立, 当时,等价于,该不等式解集为, 当时,等价于,解得, 综上,或,所以不等式的解集为. (2),易得的最小值为1,即因为,所以,所以, 当且仅当时等号成立.【点睛】本

16、题考查利用分类讨论求解绝对值不等式,涉及利用均值不等式证明不等式,属综合中档题.19(1)(2)【解析】(1)利用正弦定理和余弦定理化简,根据勾股定理逆定理求得.(2)设,由此求得的表达式,利用三角函数最值的求法,求得的最大值.【详解】(1)设,由,根据正弦定理和余弦定理得.化简整理得.由勾股定理逆定理得.(2)设,由(1)的结论知.在中,由,所以.在中,由,所以.所以,由,所以当,即时,取得最大值,且最大值为.【点睛】本小题考查正弦定理,余弦定理,勾股定理,解三角形,三角函数性质及其三角恒等变换等基础知识;考查运算求解能力,推理论证能力,化归与转换思想,应用意识.20(1)当时,公路的长度最

17、短为千米;(2)(千米).【解析】(1)设切点的坐标为,利用导数的几何意义求出切线的方程为,根据两点间距离得出,构造函数,利用导数求出单调性,从而得出极值和最值,即可得出结果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根据勾股定理即可求出的长度.【详解】(1)由题可知,设点的坐标为,又,则直线的方程为,由此得直线与坐标轴交点为:,则,故,设,则.令,解得=10.当时,是减函数;当时,是增函数.所以当时,函数有极小值,也是最小值, 所以, 此时.故当时,公路的长度最短,最短长度为千米.(2) 在中,,所以, 所以,根据正弦定理,,又, 所以.在中,由勾股定理可得,即,解得,(千米).【

18、点睛】本题考查利用导数解决实际的最值问题,涉及构造函数法以及利用导数研究函数单调性和极值,还考查正余弦定理的实际应用,还考查解题分析能力和计算能力.21(1)见解析;(2)【解析】(1)过点作交于,连接,设,连接,由角平分线的性质,正方形的性质,三角形的全等,证得,由线面垂直的判断定理证得平面,再由面面垂直的判断得证.(2)平面几何知识和线面的关系可证得平面,建立空间直角坐标系,求得两个平面的法向量,根据二面角的向量计算公式可求得其值.【详解】(1)如图,过点作交于,连接,设,连接,又为的角平分线,四边形为正方形,又,又为的中点,又平面,平面,又平面,平面平面,(2)在中,在中,又,又,平面,平面,故建立如图空间直角坐标系,则,设平面的一个法向量为,则,令,得,设平面的一个法向量为,则,令,得,由图示可知二面角是锐角,故二面角的余弦值为.【点睛】本题考查空间的面面垂直关系的证明,二面角的计算,在证明垂直关系时,注意运用平面几何中的等腰三角形的“三线合一”,勾股定理、菱形的对角线互相垂直,属于基础题.22(1)存在;详见解析(2)【解析】(1)利用面面平行的性质定理可得,为上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论