




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基于机理和数据驱动的转炉输入-输出混合模型收稿日期:基金项目:国家自然科学基金项目(51574032);国家重点研发计划项目(2016YFB0601301)作者简介:贺东风(1975),男,教授,博士生导师,主要从事冶金流程工程学炼钢-连铸过程数值模拟与优化、冶金流程系统节能,E-mail:刘远洋,贺东风,冯凯,鲁晓旭(北京科技大学冶金与生态工程学院,北京100083)摘要:为了实现能量流网络的精细化控制,建立了基于机理和数据驱动的转炉输入-输出模型。对转炉工序进行物质的输入和输出解析,根据实际生产数据利用数理统计和回归的方法,得到转炉冶炼相关参数,包括:氧气利用率、炉渣碱度、渣中氧化镁含量、
2、钢水终点氧含量、转炉热效率。进而利用冶炼机理以转炉冶炼的铁水和废钢数据,以及目标钢水的成分和温度为输入量,计算得到吹氧量、造渣剂加入等信息作为模型的输出量。根据机理模型计算的部分输出参数,利用神经网络预测钢水终点温度,并与机理模型采用的目标钢水温度进行对比,进而对机理模型进行校正,以提高模型的精确度。采用C#语言将模型程序化,模型计算结果表明,相同误差范围内,混合模型的石灰加入量、轻烧白云石加入量、氧化球团加入量命中率相较于机理模型分别提高了11.1%、8.3%、8.3%。关键词:转炉;数据驱动;输入-输出;神经网络Converter Input - Output Mixture Model
3、Based on Mechanism and Data-DrivenLIU Yuanyang HE Dongfeng FENG Kai LU Xiaoxu(School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing,Beijing 100083,China)Abstract: In order to realize the fine control of the energy flow network, a converter input - output mod
4、el is established based on mechanism and data model.In this paper, the input and output of the material in the converter process are analyzed. According to the actual production data, the converter smelting relevant parameters, including oxygen utilization rate, slag basicity, magnesium content in s
5、lag, converter thermal efficiency, are obtained by mathematical statistics and regression method. By applying the smelting mechanism the input-output model is established with the conditions of molten iron and scrap of smelting, the target molten steel composition and temperature as the inputs; the
6、information of calculated amount of oxygen and slag as the outputs. The accuracy of the model is improved through revising the mechanism model by comparing the parameters calculated by the mechanism model and the neural network respectively. The model is programed through the C # language. The resul
7、ts of model calculation show that ,in the mixed model, the hit rates of the adding amounts of lime, dolomite and the oxidizd pellets incresed 11.1%, 8.3% and 8.3% respectively compared with the mechanism model in the same error range.Key Words: Converter;Data-Driven;input- Output; Neural Networks钢铁行
8、业是我国的国民经济支柱产业,同时也是能源消耗大户,能源消耗量占全国总能耗的15%1。钢铁行业节能一直是研究的重点,从20世纪80年代的单体性技术技节能到目前以“能源转换功能”为主要指导时期的系统节能2。2010年殷瑞钰院士指出应注重与铁素流相关的碳素能量流的输入/输出特点和能量流网络的构建3。目前对于钢铁企业中能量流的研究较多,蔡九菊教授4针对物质和能量流动过程,构建了冶金工序的物质流图和能量流图;苍大强5对冶金工业节能新技术进行了深入分析;赵业清6利用混合petri网建模方法,构建了钢铁企业能量流网络系统混合Petri网模型;王懿等7对钢铁企业能量流网络的特点进行详细分析并指出未来发展趋势;
9、郑忠等8对钢铁企业信息系统进行分析,探讨了基于信息流的物质流和能量流的协同优化机制;税烺等9利用分析和传统热平衡分析对冶金生产的余能回收进行研究;孙彦广等10借助能量流网络仿真对钢铁工业中的能源介质进行优化调配;张利娜等11对转炉石灰石替代石灰造渣进行了研究;常立忠等12借助BP神经网络建立了转炉静态模型,对转炉终点C含量进行预报研究;严良涛等13以基于遗传算法的核偏最小二乘回归方法,建立转炉终点C含量预测模型;Xu L F等14采用支持向量机建立了转炉终点的预测模型;其他学者也分别采用不同的方法对转炉的终点控制进行了研究15-18。随着节能研究的深入,钢铁企业节能空间进一步缩减,因此需要对能
10、量流网络进行精细化控制研究以达到优化节能的目的,其中冶金工序的输入-输出模型作为能量流网络精细化控制的底层支持。虽然目前对于能量流网络的研究较多,但是缺乏对冶金工序输入-输出模型的研究,因此本文以转炉工序为例,以机理和数据驱动相结合的方法构建转炉输入-输出模型,为能量流网络的精细化控制提供研究基础。1 模型构建转炉在钢铁流程中作为一个中转装置,用于承载来自上一工序的能量流,并在该装置中产生一个输入-输出行为,在承载上一工序的能量流时,同时接受外加物质流。按照输入物质/能量流,外加物质/能流量、输出物质/能量流的流程模式对转炉工序进行解析,转炉工序的输入为:下游工序返回流:废钢上游工序顺流:来自
11、KR预处理工序的铁水外加消耗流:辅料(造渣剂、冷却剂)、合金、能源介质(氧气)输出为:顺流下游工序:钢水返流上游工序:无回收处理流:炉渣、炉气直接排放流:烟尘在工序解析的基础上,将已知量视为模型的输入,未知量作为模型的输出,则转炉工序的输入-输出模型如图1所示,由于转炉工序的合金料是在出钢过程中加入,于是本模型不考虑合金项。图1 转炉工序输入-输出模型Fig.1 Converter input-output model1.1模型思路本模型将机理方法与数据方法相结合,对模型输出项进行计算。先采用机理方法对模型的输出项进行机理计算,再采用以实际生产数据训练好的神经网络对出钢温度进行预测,以预测温度
12、和机理计算时采用的目标温度进行对比,若差值的绝对值小于等于10,则满足要求,输出各计算项,若差值的绝对值大于10,则不满足要求,返回机理模型对热损失参数进行修正,直至差值达到要求,热损失参数的修正按照式1进行。(1)式中:为修正后的热损失参数;为修正前的热损失参数;c为钢水比热容,kJ/(kg);为钢水量,kg;T为数据模型的预测温度与目标钢水温度之差,T=T1-T0,;为机理模型计算的热收入,kJ。模型的具体流程如图2所示。图2 模型计算流程Fig.2 Model calculation process1.2机理模型控制方程转炉冶炼造渣剂主要有石灰、轻烧白云石、氧化球团等。石灰是转炉冶炼的主
13、要造渣料,它的主要成分为CaO,具有很强的脱磷和脱硫能力,石灰的加入量主要依据铁水中Si含量和终渣碱度R来确定:(2)式中:为石灰加入量,kg;为炉渣碱度;为除石灰外的其他物料带入的及氧化生成SiO2量总和,kg;为除石灰外的其他物料带入的CaO量之和,kg;为石灰中CaO的成分含量,%;为石灰中SiO2的成分含量,%。轻烧白云石的主要成分为MgO和CaO,可以替代一部分石灰,加入轻烧白云石的主要目的是保证渣中有一定含量的MgO,减少前期酸性渣对转炉炉衬的侵蚀。轻烧白云石的加入量根据炉渣中所要求的MgO含量来确定,渣中MgO含量一般控制在7%10%。(3)式中:为轻烧白云石加入量,kg;为转炉
14、炉渣量,kg;为炉渣MgO成分含量,%;为除轻烧白云石外其他物料带入的MgO含量,kg;为轻烧白云石中MgO的成分含量,%。氧化球团作为一种优良的冷却剂,不仅可以吸收富余热量,还能减少铁水的氧化,球团的加入量根据热平衡来计算:(4)式中:为球团加入量,kg;为除球团吸热外的其他热支出之和,kJ;为单位质量球团吸热量,kJ/kg。转炉氧气的消耗主要用于铁水中元素的氧化,元素氧化所需的氧大部分来源于氧枪吹入,小部分来源于球团供氧,氧气的吹氧量为:(5)式中:为转炉吹氧量,m;为铁水中元素氧化耗氧量,m3;为冷固球团供氧量,m3;为氧气利用系数。转炉冶炼吹损主要有非Fe元素氧化损失、渣中铁损失、烟尘
15、铁损失、喷溅铁损,假设球团中铁氧化物全被还原为Fe,则出钢量为:(6)式中:为入炉铁水量,t;为入炉废钢量,t;为渣中全铁量,t;为非Fe元素氧化量总和,t,其中i为C、Si、Mn、P;为烟尘中全铁量,t;为氧化球团中全铁量,t。转炉炉渣主要来源于造渣剂和球团中非Fe成分固态氧化物、铁水中各元素氧化物,渣量的计算公式为:(7)式中:为炉渣量,kg;为石灰中固态氧化物总量,kg;为轻烧白云石中固态氧化物总量,kg;为球团中非Fe固态氧化物总量,kg;为铁水中非Fe元素氧化生成物总量,kg;为渣中FeO成分含量,%;为渣中Fe2O3成分含量,%。转炉炉气的主要成分为CO和CO2、N2,还有少许SO
16、2、H2O和自由O2,其中CO和CO2来源于铁水中C的氧化,N2、自由O2来源于吹氧带入,SO2、H2O来源于铁水中S元素氧化和外加物料,冶炼一炉钢产生的炉气量为:(8)式中:为炉气量,m3;为C氧化生成的CO量,m3;为C氧化生成的CO2量,m3;为氧气带入的N2量,m3;为铁水氧化生产和辅料中元素生成SO2量,m3;为辅料带入的水汽量,m3;自由氧量,m3;钢中溶氧量,m3。在传统的计算模型中,一般是先假定炉渣量,计算出轻烧白云石,然后计算出石灰,球团等,由于轻烧白云石能替代部分石灰,所以在计算中需要重复迭代计算。本模型计算对传统计算模型进行改进,不假定渣量,将上述式(2)、(3)、(4)
17、转换为以辅料成分和已知参数为系数的方程组见式(9),进而转换为(10)所示的矩阵形式进行求解,因为渣量、钢水量、炉气量贯穿在式(4)中,所以式(5)(8)在辅料计算后再单独计算。(9)(10)2模型参数的取值2.1机理模型参数取值以S钢厂的4#转炉为研究对象,对该转炉一年的实际生产数据进行分析,为了避免不同钢种带来的差异影响,本模型仅以该厂生产最多的SPHC-W1钢种为例,采集到原始数据1311组,删除数据缺失项后,再采用拉依达准则(准则)对数据进行处理,删除掉异常数据后剩余813组。在该转炉实际生产中,造渣剂的加入种类有石灰、轻烧白云石、白云石、氧化球团、含碳菱镁球、灰石渣 6种,813组数
18、据中,加入各种辅料的炉次占比情况分布如图3所示。图3 辅料加入情况Fig.3 The situation ofaccessories add从图中可以看出,在统计的813炉数据中,加入石灰和氧化球炉次占比100%,加入轻烧白云石的炉次占比92.4%,加入含碳菱镁球、灰石渣、白云石的炉次占比均低于13%,因此可知,生产过程中加入的物料主要有石灰、轻烧白云石、氧化球团三种,加入其它辅料的炉次视为物料水平不稳定,于是保留物料水平稳定的炉次699组,对该699炉分别计算它们的物料平衡和热平衡,计算时相关参数设定情况如下:C生成CO和CO2的比例为9:1;炉气温度:1520;炉衬侵蚀量:0.3%;烟尘损
19、失量1.6%,其中FeO占比77%,Fe2O3占比20%;氧气纯度:99.5%;炉气中自由氧含量:0.05%;根据炉渣化验情况,确定渣中FeO占比17%,Fe2O3占比7%;对钢水终点O和C数据拟合,得到终点O(ppm)与终点C(%)的关系:(10)通过物料平衡和热平衡的计算,冶炼相关参数结果统计如表1所示。表1 冶炼参数统计结果Table 1 Statistical results of smelting parameters项目平均值标准差变异系数氧气利用率0.990.0593.24%渣中MgO质量占比0.1120.01412%热效率0.7850.0202.54%其中:变异系数=标准差/平
20、均值,用以表征某项目的波动情况;热效率=(钢水物理热+废钢物理热+氧化球团物理热)/热收入。从表中可以看出氧气利用率、渣中MgO和热效率三个参数比较稳定,模型中直接取其平均值作为模型中冶炼参数。碱度由于铁水中Si含量的波动而产生较大的波动,另外碱度还与铁水中的P含量和铁水温度有关,所以根据实际渣料加入量计算出的碱度与铁水中Si、P以及铁水温度T进行多元回归,得到式(11)所示关系,于是模型中碱度参数按照式(11)进行赋值。(11)2.2数据驱动模型参数取值在采用神经网络对出钢温度进行预测时,首先需要确定输入参数,由机理分析可知,热收入主要有铁水物理热和元素氧化热,除去钢水物理热外,热支出有冷却
21、剂(废钢、氧化球团)吸热、炉渣热、热损失,铁水物理热由铁水温度和铁水量决定,元素氧化热由铁水成分含量、目标钢水成分含量决定,炉渣热包含造渣剂的吸热量,热损失则与转炉设备有关,因此可知出钢温度与铁水量、铁水成分、目标钢水成分、冷却剂量、造渣剂加入量以及炉龄都有关系,为了减少输入变量个数,对铁水成分和目标钢水成分进行计算,以元素百分氧化量替代相应输入变量,最终确定以铁水量、C氧化量、Si氧化量、Mn氧化量、P氧化量、铁水温度、石灰加入量、轻烧白云石加入量、废钢、氧化球团加入量、吹氧量、炉龄作为输入变量,以650炉生产数据作为训练数据,49炉作为测试数据。利用MATLAB软件建立一个多输入单输出的3
22、层BP神经网络,输入层节点数和输出层节点数分别为输入的变量个数和输出的变量个数,即输入层节点数为12,输出层节点数为1,以logsig函数和tansig函数作为传递函数,traingdx作为训练函数,通过试凑法确定最佳隐含层节点数为9,测试结果如图4所示。图4 测试结果对比图Fig.4 Comparison of test results测试结果精度汇总于表2。表2 测试结果精度汇总Table 2 Summary of test results误差35710精度22.45%48.98%63.27%75.51%用机理方法对上述49炉终点钢水温度进行计算,误差在10范围内的炉次只有5炉,占比为10
23、.20%,对比表2知,神经网络预测精度在10误差范围内为75.51%,明显优于机理计算,于是将训练好的神经网络模型保存,用于后续模型计算。3模型验证将相关参数取值带入模型中,并采用C#编程语言,将模型的输出项控制方程程序化,在计算出钢温度时,直接调用训练好的神经网络,以机理计算出的输出参数作为数据驱动模型的输入变量,对出钢进行预测计算,并将结果与目标温度进行对比,若误差未满足要求则返回调整热损失参数继续计算,直至误差在要求范围内。简易的程序界面如图5所示。图5 转炉工序输入-输出模型简易计算界面Fig.5 Thesimple calculation interfaceofconverter p
24、rocess input - output model 为了验证本文中模型的可行性,以数据驱动模型中预测精度在10误差范围内的36炉数据进行验证计算。对该36炉数据分别采用单一的机理模型和本文的混合模型进行计算,结果见表3和表4。表3 模型渣料计算命中率Table3 The hit rate of the slag in the model项目机理模型(误差1t)本文混合模型(误差1t)石灰加入量75.0%86.1%轻烧白云石加入量80.5%88.8%氧化球团加入量69.4%77.7%表4 吹氧量命中率Table4 The hit rate of oxygen consumption误差机理模
25、型本文混合模型5%80.5%83.3%7%88.8%91.7%生产数据中未采集单炉炉气量和炉渣量数据,因此无法对比;出钢量由于钢包容量限制的原因,钢水产量与出钢量并不一定相等,于是模型结果不做比较。由表3可知,在相同误差范围内,本文混合模型的命中率相较于机理模型都有所提高,石灰加入量命中率提高11.1%,轻烧白云石加入量命中率提高8.3%,氧化球团加入量命中率提高8.3%;转炉吹氧量主要用于铁水中碳氧化,与渣料加入量的多少关系不大,因此两种模型计算出的结果差距不大。4结论构建了基于机理和数据驱动的转炉输入-输出混合模型,以数据驱动模型对机理模型进行校正,提高了模型精度。以C#语言将模型程序化,
26、以简易界面可视化显示,并用该程序对36炉数据进行输入-输出计算,在1t误差范围内,石灰加入量命中率为86.1%,轻烧白云石加入量命中率为88.8%,球团加入量命中率为77.7%,相较于纯机理模型分别提高了11.1%、8.3%、8.3%;吹氧量命中率在7%误差范围内为91.7%,比纯机理模型提高2.9%。参考文献王俊岭, 张新社. 中国钢铁工业经济增长、能源消耗与碳排放脱钩分析J. 河北经贸大学学报, 2017, 38(4):77-82.殷瑞钰. 从开放系统、耗散结构到钢厂的能量流网络化集成J. 中国冶金, 2010, 20(8):1-14.殷瑞钰. 钢铁制造流程的能量流行为和能量流网络问题J.
27、 工程研究-跨学科视野中的工程, 2010, 2(1):1-4.蔡九菊, 王建军, 陆钟武,等. 钢铁企业物质流与能量流及其相互关系J. 东北大学学报(自然科学版), 2006, 27(9):979-982.苍大强. 国内外冶金工业源头节能减排的新方法、新技术J. 有色金属科学与工程,2015,6(06):1-6.赵业清. 基于混合Petri网的钢铁企业能量流网络模型研究J. 冶金自动化,2014,38(05):27-32.王懿, 芦永明. 钢铁企业能量流网络研究现状与发展趋势J. 冶金能源, 2016, 35(3):3-8.郑忠, 黄世鹏, 李曼琛,等. 钢铁制造流程的物质流和能量流协同优化J. 钢铁研究学报, 2016, 28(4):1-7.税烺,贺东风,艾立翔,徐安军,田乃媛. 冶金生产余能回收的一种新的能量分析法J. 有色金属科学与工程,2012,3(01):43-48.孙彦广, 梁青艳, 李文兵,等. 基于能量流网络仿真的钢铁工业多能源介质优化调配J.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025光伏发电系统采购合同
- 2025混凝土工程施工合同范本
- 2025节能服务合同模板
- 2025高空建筑外墙清洁保养合同
- 2025授权印刷合同范本
- 2025冰箱销售正规合同范本
- 2025存量房屋租赁合同范本
- 2025维修仓库租赁合同范本
- 2025合同意向书合同意向书的法律效力
- 2025办公室装修水电施工合同范本 办公室水电施工合同格式
- GB/T 4008-2024锰硅合金
- 中国肺血栓栓塞诊治与预防指南解读专家讲座
- 2024急性脑梗死溶栓规范诊治指南(附缺血性脑卒中急诊急救专家共识总结归纳表格)
- 《鸿门宴》公开课一等奖创新教学设计 统编版高中语文必修下册
- DZ∕T 0202-2020 矿产地质勘查规范 铝土矿(正式版)
- 二年级三位数加减法竖式计算
- 安全生产投入台账(模板)
- 清华大学领军计划语文试题强基计划
- 医疗欠款欠条范本
- 母亲节健康科普知识
- 《奥尔夫音乐教学法》课程标准
评论
0/150
提交评论