版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、主成分分析与因子分析介绍: 1、主成分分析与因子分析的概念 2、主成分分析与因子分析的过程主成分分析与因子分析的概念需要与可能:在各个领域的科学研究中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为科学研究提供丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在大多数情况下,许多变量之间可能存在相关性而增加了问题分析的复杂性,同时对分析带来不便。如果分别分析每个指标,分析又可能是孤立的,而不是综合的。盲目减少指标会损失很多信息,容易产生错误的结论。因此需要找到一个合理的方法,减少分析指标的同时,尽量减少原指标包含信息的损失,对所收
2、集的资料作全面的分析。由于各变量间存在一定的相关关系,因此有可能用较少的综合指标分别综合存在于各变量中的各类信息。主成分分析与因子分析就是这样一种降维的方法。主成分分析与因子分析是将多个实测变量转换为少数几个不相关的综合指标的多元统计分析方法直线综合指标往往是不能直接观测到的,但它更能反映事物的本质。因此在医学、心理学、经济学等科学领域以及社会化生产中得到广泛的应用。由于实测的变量间存在一定的相关关系,因此有可能用较少数的综合指标分别综合存在于各变量中的各类信息,而综合指标之间彼此不相关,即各指标代表的信息不重叠。综合指标称为因子或主成分(提取几个因子),一般有两种方法:特征值1累计贡献率0.
3、8汇报什么?假定你是一个公司的财务经理,掌握了公司的所有数据,比如固定资产、流动资金、每一笔借贷的数额和期限、各种税费、工资支出、原料消耗、产值、利润、折旧、职工人数、职工的分工和教育程度等等。如果让你向上面介绍公司状况,你能够把这些指标和数字都原封不动地摆出去吗? 当然不能。你必须要把各个方面作出高度概括,用一两个指标简单明了地把情况说清楚。 因子分析的定义和数学模型 定义:在社会、政治、经济和医学等领域的研究中往往需要对反映事物的多个变量进行大量的观察,收集大量的数据以便进行分析,寻找规律。在大多数情况下,许多变量之间存在一定的相关关系。 因此,有可能用较少的综合指标分析存在于各变量中的各
4、类信息,而各综合指标之间彼此是不相关的,代表各类信息的综合指标称为因子。因子分析就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子反映原资料的大部分信息的统计学方法。因子分析有如下特点。(1)因子变量的数量远少于原有的指标变量的数量,对因子变量的分析能够减少分析中的计算工作量。(2)因子变量不是对原有变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。(3)因子变量之间不存在线性相关关系,对变量的分析比较方便。(4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。 对多变量的平面数据进行最佳综合和简化,即在保证数据信息丢失最少的原则下
5、,对高维变量空间进行降维处理。显然,在一个低维空间解释系统,要比在一个高维系统空间容易得多。 英国统计学家Moser Scott在1961年对英国157个城镇发展水平进行调查时,原始测量的变量有57个,而通过因子分析发现,只需要用5个新的综合变量(它们是原始变量的线性组合),就可以解释95%的原始信息。对问题的研究从57维度降低到5个维度,因此可以进行更容易的分析。数学模型因子分析中的几个概念1因子载荷2变量共同度3公共因子Fj的方差贡献 因子分析有两个核心问题:一是如何构造因子变量;二是如何对因子变量进行命名解释。因子分析有下面4个基本步骤。 (1)确定待分析的原有若干变量是否适合于因子分析
6、。 (2)构造因子变量。 (3)利用旋转使得因子变量更具有可解释性。 (4)计算因子变量的得分。 因子分析的4个基本步骤 因子分析是从众多的原始变量中构造出少数几个具有代表意义的因子变量,这里面有一个潜在的要求,即原有变量之间要具有比较强的相关性。如果原有变量之间不存在较强的相关关系,那么就无法从中综合出能反映某些变量共同特性的少数公共因子变量来。因此,在因子分析时,需要对原有变量作相关分析。确定待分析的原有若干变量是否适合于因子分析 最简单的方法就是计算变量之间的相关系数矩阵。如果相关系数矩阵在进行统计检验中,大部分相关系数都小于0.3,并且未通过统计检验,那么这些变量就不适合于进行因子分析
7、。 1巴特利特球形检验(Bartlett Test of Sphericity) 2反映像相关矩阵检验(Antiimage correlation matrix) 3KMO(Kaiser-Meyer-Olkin)检验 因子分析中有多种确定因子变量的方法,如基于主成分模型的主成分分析法和基于因子分析模型的主轴因子法、极大似然法、最小二乘法等。其中基于主成分模型的主成分分析法是使用最多的因子分析方法之一。下面以该方法为对象进行分析。构造因子变量因子变量的命名解释 在实际分析工作中,主要是通过对载荷矩阵A的值进行分析,得到因子变量和原变量的关系,从而对新的因子变量进行命名。 计算因子得分是因子分析的
8、最后一步。因子变量确定以后,对每一样本数据,希望得到它们在不同因子上的具体数据值,这些数值就是因子得分,它和原变量的得分相对应。有了因子得分,在以后的研究中,就可以针对维数少的因子得分来进行。计算因子得分主成分分析每个人都会遇到有很多变量的数据。比如全国或各个地区的带有许多经济和社会变量的数据;各个学校的研究、教学等各种变量的数据等等。这些数据的共同特点是变量很多,在如此多的变量之中,有很多是相关的。人们希望能够找出它们的少数“代表”来对它们进行描述。本章就介绍两种把变量维数降低以便于描述、理解和分析的方法:主成分分析(principal component analysis)和因子分析(fa
9、ctor analysis)。实际上主成分分析可以说是因子分析的一个特例。在引进主成分分析之前,先看下面的例子。成绩数据(student.sav)100个学生的数学、物理、化学、语文、历史、英语的成绩如下表(部分)。 从本例可能提出的问题目前的问题是,能不能把这个数据的6个变量用一两个综合变量来表示呢?这一两个综合变量包含有多少原来的信息呢?能不能利用找到的综合变量来对学生排序呢?这一类数据所涉及的问题可以推广到对企业,对学校进行分析、排序、判别和分类等问题。主成分分析例中的的数据点是六维的;也就是说,每个观测值是6维空间中的一个点。我们希望把6维空间用低维空间表示。先假定只有二维,即只有两个
10、变量,它们由横坐标和纵坐标所代表;因此每个观测值都有相应于这两个坐标轴的两个坐标值;如果这些数据形成一个椭圆形状的点阵(这在变量的二维正态的假定下是可能的)那么这个椭圆有一个长轴和一个短轴。在短轴方向上,数据变化很少;在极端的情况,短轴如果退化成一点,那只有在长轴的方向才能够解释这些点的变化了;这样,由二维到一维的降维就自然完成了。主成分分析当坐标轴和椭圆的长短轴平行,那么代表长轴的变量就描述了数据的主要变化,而代表短轴的变量就描述了数据的次要变化。但是,坐标轴通常并不和椭圆的长短轴平行。因此,需要寻找椭圆的长短轴,并进行变换,使得新变量和椭圆的长短轴平行。如果长轴变量代表了数据包含的大部分信
11、息,就用该变量代替原先的两个变量(舍去次要的一维),降维就完成了。椭圆(球)的长短轴相差得越大,降维也越有道理。主成分分析对于多维变量的情况和二维类似,也有高维的椭球,只不过无法直观地看见罢了。首先把高维椭球的主轴找出来,再用代表大多数数据信息的最长的几个轴作为新变量;这样,主成分分析就基本完成了。注意,和二维情况类似,高维椭球的主轴也是互相垂直的。这些互相正交的新变量是原先变量的线性组合,叫做主成分(principal component)。 主成分分析正如二维椭圆有两个主轴,三维椭球有三个主轴一样,有几个变量,就有几个主成分。选择越少的主成分,降维就越好。什么是标准呢?那就是这些被选的主成
12、分所代表的主轴的长度之和占了主轴长度总和的大部分。有些文献建议,所选的主轴总长度占所有主轴长度之和的大约85%即可,其实,这只是一个大体的说法;具体选几个,要看实际情况而定。对于我们的数据,SPSS输出为这里的Initial Eigenvalues就是这里的六个主轴长度,又称特征值(数据相关阵的特征值)。头两个成分特征值累积占了总方差的81.142%。后面的特征值的贡献越来越少。 特征值的贡献还可以从SPSS的所谓碎石图看出怎么解释这两个主成分。前面说过主成分是原始六个变量的线性组合。是怎么样的组合呢?SPSS可以输出下面的表。 这里每一列代表一个主成分作为原来变量线性组合的系数(比例)。比如
13、第一主成分作为数学、物理、化学、语文、历史、英语这六个原先变量的线性组合,系数(比例)为-0.806, -0.674, -0.675, 0.893, 0.825, 0.836。 如用x1,x2,x3,x4,x5,x6分别表示原先的六个变量,而用y1,y2,y3,y4,y5,y6表示新的主成分,那么,原先六个变量x1,x2,x3,x4,x5,x6与第一和第二主成分y1,y2的关系为:X1=-0.806y1 + 0.353y2X2=-0.674y1 + 0.531y2X3=-0.675y1 + 0.513y2X4= 0.893y1 + 0.306y2x5= 0.825y1 + 0.435y2x6=
14、 0.836y1 + 0.425y2这些系数称为主成分载荷(loading),它表示主成分和相应的原先变量的相关系数。比如x1表示式中y1的系数为-0.806,这就是说第一主成分和数学变量的相关系数为-0.806。相关系数(绝对值)越大,主成分对该变量的代表性也越大。可以看得出,第一主成分对各个变量解释得都很充分。而最后的几个主成分和原先的变量就不那么相关了。 可以把第一和第二主成分的载荷点出一个二维图以直观地显示它们如何解释原来的变量的。这个图叫做载荷图。该图左面三个点是数学、物理、化学三科,右边三个点是语文、历史、外语三科。图中的六个点由于比较挤,不易分清,但只要认识到这些点的坐标是前面的
15、第一二主成分载荷,坐标是前面表中第一二列中的数目,还是可以识别的。主成分分析实例P316不旋转使用默认值进行最简单的主成分分析(默认为主成分分析法:Principal components)例子P316:对美国洛杉矶12个人口调查区的5个经济学变量的数据进行因子分析,data13-01a,数据见下一张幻灯片)菜单:AnalyzeData ReductionFactorVariables :pop,School,employ,Services, house其他使用默认值(主成分分析法Principal components,选取特征值1,不旋转)比较有用的结果:两个主成分(因子)f1,f2及因子
16、载荷矩阵(Component Matrix),根据该表可以写出每个原始变量(标准化值)的因子表达式: Pop0.581f1 + 0.806f2 School 0.767f1 - 0.545f2 employ 0.672f1 + 0.726f2 Services 0.932f1 - 0.104f2 house 0.791f1 - 0.558f2每个原始变量都可以是5个因子的线性组合,提取两个因子f1和f2,可以概括原始变量所包含信息的93.4%。 f1和f2前的系数表示该因子对变量的影响程度,也称为变量在因子上的载荷。但每个因子(主成分)的系数(载荷)没有很明显的差别,所以不好命名。因此为了对因
17、子进行命名,可以进行旋转,使系数向0和1两极分化,这就要使用选择项。洛衫矶对12个人口调查区的数据编号 总人口 中等学校平均 总雇员数 专业服务 中等房价no pop 校龄School employ 项目数Services house15700 12.8 2500 270 25000 21000 10.9 600 10 10000 33400 8.8 1000 10 9000 43800 13.6 1700 140 2500054000 12.8 1600 140 25000 68200 8.3 2600 6012000 71200 11.4 400 1016000 89100 11.5 33
18、00 6014000 99900 12.5 3400 180 13.7 3600 390 25000119600 9.6 3300 80 12000129400 11.4 4000 100 13000主成分分析实例P330 不旋转市场研究中的顾客偏好分析在市场研究中,常常要求分析顾客的偏好和当前市场的产品与顾客偏好之间的差别,从而找出新产品开发的方向。顾客偏好分析时常用到主成分分析方法(因子没有旋转)。例子P330:数据来自SAS公司,1980年一个汽车制造商在竞争对手中选择了17种车型,访问了25个顾客,要求他们根据自己的偏好对17种车型打分。打分范围09.9, 9.9表示最高程度的偏好。d
19、ata13-02a(1725:17个case,25个变量V1-V25)菜单:AnalyzeData ReductionFactorVariables :V1-V25Extraction:method:Principal components Extract:Number of factors:3 要三个主成分Score:Save as variables比较有用的结果:3个主成分及其因子载荷矩阵(Component Matrix):第一主成分和第二主成分的载荷图(Loading plots)比较有用的结果:因子得分fac1_1, fac2_1 , fac3_1。然后可以利用因子得分进行各种分析
20、:做偏好图: 用fac1_1, fac2_1做散点图(Graphs-Scatter:X- fac1_1 , Y- fac2_1):第一主成分反映了车的产地,第二主成分反映了车的特性(质量、动力、座位数等)具体见P332-334因子分析主成分分析从原理上是寻找椭球的所有主轴。因此,原先有几个变量,就有几个主成分。而因子分析是事先确定要找几个成分,这里叫因子(factor)(比如两个),那就找两个。这使得在数学模型上,因子分析和主成分分析有不少区别。而且因子分析的计算也复杂得多。根据因子分析模型的特点,它还多一道工序:因子旋转(factor rotation);这个步骤可以使结果更好。当然,对于计
21、算机来说,因子分析并不比主成分分析多费多少时间。从输出的结果来看,因子分析也有因子载荷(factor loading)的概念,代表了因子和原先变量的相关系数。但是在输出中的因子和原来变量相关系数的公式中的系数不是因子载荷,也给出了二维图;该图虽然不是载荷图,但解释和主成分分析的载荷图类似。 主成分分析与因子分析的公式上的区别主成分分析 P312因子分析(m1)Rotation:method选VarimaxScore:Save as variables 和Display factor score Coefficient matrix比较有用的结果:两个主成分(因子)f1,f2及旋转后的因子载荷矩
22、阵(Rotated Component Matrix) ,根据该表可以写出每个原始变量(标准化值)的因子表达式: Pop 0.01602 f1 + 0.9946f2 School 0 .941f1 - 0.00882f2 employ 0.137f1 + 0.98f2 Services 0.825f1 +0.447f2 house 0.968f1 - 0.00605f2第一主因子对中等学校平均校龄,专业服务项目,中等房价有绝对值较大的载荷(代表一般社会福利-福利条件因子); 而第二主因子对总人口和总雇员数有较大的载荷(代表人口-人口因子). P326比较有用的结果:因子得分fac1_1, fa
23、c2_1。其计算公式:因子得分系数和原始变量的标准化值的乘积之和(P326)。然后可以利用因子得分进行聚类p327(Analyze-Classify-Hierarchical Cluster)。因子分析和主成分分析的一些注意事项 可以看出,因子分析和主成分分析都依赖于原始变量,也只能反映原始变量的信息。所以原始变量的选择很重要。另外,如果原始变量都本质上独立,那么降维就可能失败,这是因为很难把很多独立变量用少数综合的变量概括。数据越相关,降维效果就越好。在得到分析的结果时,并不一定会都得到如我们例子那样清楚的结果。这与问题的性质,选取的原始变量以及数据的质量等都有关系在用因子得分进行排序时要特
24、别小心,特别是对于敏感问题。由于原始变量不同,因子的选取不同,排序可以很不一样。SPSS实现(因子分析与主成分分析)拿student.sav为例,选AnalyzeData ReductionFactor进入主对话框;把math、phys、chem、literat、history、english选入Variables,然后点击Extraction,在Method选择一个方法(如果是主成分分析,则选Principal Components),下面的选项可以随意,比如要画碎石图就选Scree plot,另外在Extract选项可以按照特征值的大小选主成分(或因子),也可以选定因子的数目;之后回到主对
25、话框(用Continue)。然后点击Rotation,再在该对话框中的Method选择一个旋转方法(如果是主成分分析就选None),在Display选Rotated solution(以输出和旋转有关的结果)和Loading plot(以输出载荷图);之后回到主对话框(用Continue)。如果要计算因子得分就要点击Scores,再选择Save as variables(因子得分就会作为变量存在数据中的附加列上)和计算因子得分的方法(比如Regression);之后回到主对话框(用Continue)。这时点OK即可。SPSS中实现步骤 研究问题 表9-2所示为20名大学生关于价值观的9项测验结
26、果,包括合作性、对分配的看法、行为出发点、工作投入程度、对发展机会的看法、社会地位的看法、权力距离、对职位升迁的态度、以及领导风格的偏好。20名大学生的9项测验结果合作性分 配出发点工作投入发展机会社会地位权力距离职位升迁领导风格16161318161715161618191516181818171917171714171816161617171716191819201916151616181815161620171617181817191818161620151619141716161318161715161618191516181818171917171714171816161617171716191819201916151616181815161620171617181817191818
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手外一般护理常规
- 青少年心理健康与成长培训
- 软瘫期的康复治疗
- 《低碳城市苏湘鄂》课件
- 《体机产品介绍》课件
- 制定员工创业精神激发的培训考核试卷
- SB-210661-生命科学试剂-MCE
- 丽江营销策划方案
- 2024年压力式温度计项目立项申请报告
- 2024年医疗康复器材项目提案报告范文
- 《风电场项目经济评价规范》(NB-T 31085-2016)
- 最简单模具合同
- 工业物联网理论知识试题
- 激光器技术发展与应用前景
- 中学物理校本课程
- 居士念佛团规章制度
- 3D打印技术与应用
- 餐饮原料的采购与采购课件
- 视觉传达设计生涯发展展示
- 2024年北京联通新苗计划校园招聘笔试参考题库含答案解析
- 《左心室肥厚诊断和治疗临床路径中国专家共识2023》解读
评论
0/150
提交评论