2021-2022学年重庆地区高考数学倒计时模拟卷含解析_第1页
2021-2022学年重庆地区高考数学倒计时模拟卷含解析_第2页
2021-2022学年重庆地区高考数学倒计时模拟卷含解析_第3页
2021-2022学年重庆地区高考数学倒计时模拟卷含解析_第4页
2021-2022学年重庆地区高考数学倒计时模拟卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的图象大致为( )ABCD2若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为( )ABCD3已知直线y=k(x+1)(k0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA| =( )A1B2C3D44已知为实数集,则( )ABCD5己知集合,则( )ABCD 6已知命题,;命题若,则,下列命题为真命题的是()ABCD7已知双曲线x2a2-y2b2=1(a0,b0),其右焦点F的坐标为(c,0),点A是第一象限内双曲线渐

3、近线上的一点,O为坐标原点,满足|OA|=c2a,线段AF交双曲线于点M.若M为AF的中点,则双曲线的离心率为( )A2B2C233D438复数满足,则复数等于()ABC2D-29某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A8BCD10将函数的图像向左平移个单位得到函数的图像,则的最小值为( )ABCD11下列不等式成立的是( )ABCD12双曲线x2a2-y2b2=1(a0,b0)的离心率为3,则其渐近线方程为Ay=2xBy=3xCy=22xDy=32x二、填空题:本题共4小题,每小题5分,共20分。13某校为了解家长对学校食堂的满意情况,分别从高一、高二年级随机抽取了20位家长的

4、满意度评分,其频数分布表如下:满意度评分分组合计高一1366420高二2655220根据评分,将家长的满意度从低到高分为三个等级:满意度评分评分70分70评分90评分90分满意度等级不满意满意非常满意假设两个年级家长的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率.现从高一、高二年级各随机抽取1名家长,记事件:“高一家长的满意度等级高于高二家长的满意度等级”,则事件发生的概率为_.14已知数列与均为等差数列(),且,则_15设函数,则_.16已知集合,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)椭圆的左、右焦点分别为,椭圆上两动点使

5、得四边形为平行四边形,且平行四边形的周长和最大面积分别为8和.(1)求椭圆的标准方程;(2)设直线与椭圆的另一交点为,当点在以线段为直径的圆上时,求直线的方程.18(12分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.()求曲线的普通方程与直线的直角坐标方程;()已知直线与曲线交于,两点,与轴交于点,求.19(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:AQI空气质量优良轻度污染中度污染重度污染

6、重度污染天数61418272510(1)从空气质量指数属于0,50,(50,100的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.20(12分)己知,.(

7、1)求证:;(2)若,求证:.21(12分)已知函数().(1)讨论的单调性;(2)若对,恒成立,求的取值范围.22(10分)如图,点是以为直径的圆上异于、的一点,直角梯形所在平面与圆所在平面垂直,且,.(1)证明:平面;(2)求点到平面的距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】根据函数的奇偶性和单调性,排除错误选项,从而得出正确选项.【详解】因为,所以是偶函数,排除C和D.当时,令,得,即在上递减;令,得,即在上递增.所以在处取得极小值,排除B.故选:A【点睛】本小题主要考查函数图像的识别,考查利用导数研

8、究函数的单调区间和极值,属于中档题.2D【解析】求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.【点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.3C【解析】方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的

9、定义求得,进而求得.方法二:设出两点的横坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.【详解】方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,则,所以,又所以由等腰三角形三线合一得点的横坐标为,所以,所以方法二:抛物线的准线方程为,直线由题意设两点横坐标分别为,则由抛物线定义得又 由得.故选:C【点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.4C【解析】求出集合,由此能求出【详解】为实数集,或,故选:【点睛】本题考查交集、补集的求法,考查交集、补集的

10、性质等基础知识,考查运算求解能力,是基础题5C【解析】先化简,再求.【详解】因为,又因为,所以,故选:C.【点睛】本题主要考查一元二次不等式的解法、集合的运算,还考查了运算求解能力,属于基础题.6B【解析】解:命题p:x0,ln(x+1)0,则命题p为真命题,则p为假命题;取a=1,b=2,ab,但a2b2,则命题q是假命题,则q是真命题pq是假命题,pq是真命题,pq是假命题,pq是假命题故选B7C【解析】计算得到Ac,bca,Mc,bc2a,代入双曲线化简得到答案.【详解】双曲线的一条渐近线方程为y=bax,A是第一象限内双曲线渐近线上的一点,|OA|=c2a,故Ac,bca,Fc,0,故

11、Mc,bc2a,代入双曲线化简得到:3c24a2=1,故e=233.故选:C.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.8B【解析】通过复数的模以及复数的代数形式混合运算,化简求解即可.【详解】复数满足,故选B.【点睛】本题主要考查复数的基本运算,复数模长的概念,属于基础题9D【解析】根据三视图还原几何体为四棱锥,即可求出几何体的表面积【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以,故选:【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.10B【解析

12、】根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可【详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,当时,取得最小值为,故选:【点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键11D【解析】根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误.【详解】对于,错误;对于,在上单调递减,错误;对于,错误;对于,在上单调递增,正确.故选:.【点睛】本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.12A【解析】分析:根据离心率得a,c关系

13、,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:e=ca=3,b2a2=c2-a2a2=e2-1=3-1=2,ba=2,因为渐近线方程为y=bax,所以渐近线方程为y=2x,选A.点睛:已知双曲线方程x2a2-y2b2=1(a,b0)求渐近线方程:x2a2-y2b2=0y=bax.二、填空题:本题共4小题,每小题5分,共20分。130.42【解析】高一家长的满意度等级高于高二家长的满意度等级有三种情况,分别求出三种情况的概率,再利用加法公式即可.【详解】由已知,高一家长满意等级为不满意的概率为,满意的概率为,非常满意的概率为,高二家长满意等级为不满意的概率为,满意的概率为,非常

14、满意的概率为,高一家长的满意度等级高于高二家长的满意度等级有三种情况:1.高一家长满意,高二家长不满意,其概率为;2.高一家长非常满意,高二家长不满意,其概率为;3.高一家长非常满意,高二家长满意,其概率为.由加法公式,知事件发生的概率为.故答案为:【点睛】本题考查独立事件的概率,涉及到概率的加法公式,是一道中档题.1420【解析】设等差数列的公差为,由数列为等差数列,且,根据等差中项的性质可得,解方程求出公差,代入等差数列的通项公式即可求解.【详解】设等差数列的公差为,由数列为等差数列知,因为,所以,解得,所以数列的通项公式为,所以.故答案为:【点睛】本题考查等差数列的概念及其通项公式和等差

15、中项;考查运算求解能力;等差中项的运用是求解本题的关键;属于基础题.15【解析】由自变量所在定义域范围,代入对应解析式,再由对数加减法运算法则与对数恒等式关系分别求值再相加,即为答案.【详解】因为函数,则因为,则故故答案为:【点睛】本题考查分段函数求值,属于简单题.16【解析】根据交集的定义即可写出答案。【详解】,故填【点睛】本题考查集合的交集,需熟练掌握集合交集的定义,属于基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)或【解析】(1)根据题意计算得到,得到椭圆方程.(2)设,联立方程得到,根据,计算得到答案.【详解】(1)由平行四边形的周长为8,可知,

16、即.由平行四边形的最大面积为,可知,又,解得.所以椭圆方程为.(2)注意到直线的斜率不为0,且过定点.设,由消得,所以,因为,所以.因为点在以线段为直径的圆上,所以,即,所以直线的方程或.【点睛】本题考查了椭圆方程,根据直线和椭圆的位置关系求直线,将题目转化为是解题的关键.18(1)(x1)2y24,直线l的直角坐标方程为xy20;(2)3.【解析】(1)消参得到曲线的普通方程,利用极坐标和直角坐标方程的互化公式求得直线的直角坐标方程;(2)先得到直线的参数方程,将直线的参数方程代入到圆的方程,得到关于的一元二次方程,由根与系数的关系、参数的几何意义进行求解.【详解】(1)由曲线C的参数方程

17、(为参数) (为参数),两式平方相加,得曲线C的普通方程为(x1)2y24;由直线l的极坐标方程可得coscossinsincossin2,即直线l的直角坐标方程为xy20.(2)由题意可得P(2,0),则直线l的参数方程为 (t为参数)设A,B两点对应的参数分别为t1,t2,则|PA|PB|t1|t2|,将 (t为参数)代入(x1)2y24,得t2t30,则0,由韦达定理可得t1t23,所以|PA|PB|3|3.19(1);(2)(i)详见解析;(ii)会超过;详见解析【解析】(1)利用组合进行计算以及概率表示,可得结果.(2)(i)写出X所有可能取值,并计算相对应的概率,列出表格可得结果.

18、(ii)由(i)的条件结合7月与8月空气质量所对应的概率,可得7月与8月经济损失的期望和,最后7月、8月、9月经济损失总额的数学期望与2.88万元比较,可得结果.【详解】(1)设为选取的3天中空气质量为优的天数,则P(2),P(3),则这3天中空气质量至少有2天为优的概率为;(2)(i),X的分布列如下:X02201480P(ii)由(i)可得:E(X)02201480302(元),故该企业9月的经济损失的数学期望为30E(X),即30E(X)9060元,设7月、8月每天因空气质量造成的经济损失为Y元,可得:,E(Y)02201480320(元),所以该企业7月、8月这两个月因空气质量造成经济

19、损失总额的数学期望为320(31+31)19840(元),由19840+90602890028800,即7月、8月、9月这三个月因空气质量造成经济损失总额的数学期望会超过2.88万元.【点睛】本题考查概率中的分布列以及数学期望,属基础题。20(1)证明见解析(2)证明见解析【解析】(1)采用分析法论证,要证,分式化整式为,再利用立方和公式转化为,再作差提取公因式论证.(2)由基本不等式得,再用不等式的基本性质论证.【详解】(1)要证,即证,即证,即证,即证,即证,该式显然成立,当且仅当时等号成立,故.(2)由基本不等式得,当且仅当时等号成立.将上面四式相加,可得,即.【点睛】本题考查证明不等式的方法、基本不等式,还考查推理论证能力以及化归与转化思想,属于中档题.21(1)当时,在上单调递减,在上单调递增;当时, 在上单调递增;(2).【解析】(1)求出函数的定义域

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论