版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1己知函数的图象与直线恰有四个公共点,其中,则( )AB0C1D2函数的图象如图所示,则它的解析式可能是( )ABCD3设不等式组表示的平面区域为,若从圆:的内部随机选取一点,则取自的
2、概率为( )ABCD4自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有( )A12种B24种C36种D72种5已知双曲线的左、右焦点分别为,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为( )ABCD6已知集合,则全集
3、则下列结论正确的是( )ABCD7已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )绕着轴上一点旋转; 沿轴正方向平移;以轴为轴作轴对称;以轴的某一条垂线为轴作轴对称.ABCD8若数列为等差数列,且满足,为数列的前项和,则( )ABCD9已知,则的大小关系为( )ABCD10算数书竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么
4、近似公式相当于将圆锥体积公式中的圆周率近似取为( )ABCD11已知等比数列的各项均为正数,设其前n项和,若(),则( )A30BCD6212已知,若方程有唯一解,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设,满足约束条件,则的最大值为_.14已知向量,则_.15曲线f(x)=(x2 +x)lnx在点(1,f(1)处的切线方程为_.16某学习小组有名男生和名女生.若从中随机选出名同学代表该小组参加知识竞赛,则选出的名同学中恰好名男生名女生的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在正四棱柱中,已知,.(
5、1)求异面直线与直线所成的角的大小;(2)求点到平面的距离.18(12分)如图,在三棱柱中,是边长为2的等边三角形,.(1)证明:平面平面;(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.19(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系.(1)设直线l的极坐标方程为,若直线l与曲线C交于两点AB,求AB的长;(2)设M、N是曲线C上的两点,若,求面积的最大值.20(12分)十八大以来,党中央提出要在2020年实现全面脱贫,为了实现这一目标,国家对“新农合”(新型
6、农村合作医疗)推出了新政,各级财政提高了对“新农合”的补助标准提高了各项报销的比例,其中门诊报销比例如下:表1:新农合门诊报销比例医院类别村卫生室镇卫生院二甲医院三甲医院门诊报销比例60%40%30%20%根据以往的数据统计,李村一个结算年度门诊就诊人次情况如下:表2:李村一个结算年度门诊就诊情况统计表医院类别村卫生室镇卫生院二甲医院三甲医院一个结算年度内各门诊就诊人次占李村总就诊人次的比例70%10%15%5%如果一个结算年度每人次到村卫生室、镇卫生院、二甲医院、三甲医院门诊平均费用分别为50元、100元、200元、500元若李村一个结算年度内去门诊就诊人次为2000人次()李村在这个结算年
7、度内去三甲医院门诊就诊的人次中,60岁以上的人次占了80%,从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的概率是多少?()如果将李村这个结算年度内门诊就诊人次占全村总就诊人次的比例视为概率,求李村这个结算年度每人次用于门诊实付费用(报销后个人应承担部分)的分布列与期望21(12分)已知中,是上一点(1)若,求的长;(2)若,求的值22(10分)已知函数.(1)讨论的单调性;(2)曲线在点处的切线斜率为.(i)求;(ii)若,求整数的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】先将函数解
8、析式化简为,结合题意可求得切点及其范围,根据导数几何意义,即可求得的值.【详解】函数即直线与函数图象恰有四个公共点,结合图象知直线与函数相切于,因为,故,所以.故选:A.【点睛】本题考查了三角函数的图像与性质的综合应用,由交点及导数的几何意义求函数值,属于难题.2B【解析】根据定义域排除,求出的值,可以排除,考虑排除.【详解】根据函数图象得定义域为,所以不合题意;选项,计算,不符合函数图象;对于选项, 与函数图象不一致;选项符合函数图象特征.故选:B【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.3B【解析】画出不等式组表示的可行域,求得阴影部分扇形对应的
9、圆心角,根据几何概型概率计算公式,计算出所求概率.【详解】作出中在圆内部的区域,如图所示,因为直线,的倾斜角分别为,所以由图可得取自的概率为.故选:B【点睛】本小题主要考查几何概型的计算,考查线性可行域的画法,属于基础题.4C【解析】先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C【点睛】此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.5C【解析】由双曲线定义得,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【详解】根据题意,点P一定
10、在左支上.由及,得,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.由,得. 由,解得,即,则渐近线方程为.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.6D【解析】化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【详解】由,则,故,由知,因此,故选:D【点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.7D【解析】计算得到,故函数是周期函数,轴对称图形,故正确,根据图像知错误,得到答案.【详解】,当沿轴正方向平移个单位时,重
11、合,故正确;,故,函数关于对称,故正确;根据图像知:不正确;故选:.【点睛】本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.8B【解析】利用等差数列性质,若,则 求出,再利用等差数列前项和公式得【详解】解:因为 ,由等差数列性质,若,则得,为数列的前项和,则故选:【点睛】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则 (2)要注意等差数列前项和公式的灵活应用,如.9D【解析】由指数函数的图像与性质易得最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较和的大小关系,进而得解.【详解】根据指数函数的图像与性质可知,由对数函数的图像与性
12、质可知,所以最小;而由对数换底公式化简可得由基本不等式可知,代入上式可得所以,综上可知,故选:D.【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.10C【解析】将圆锥的体积用两种方式表达,即,解出即可.【详解】设圆锥底面圆的半径为r,则,又,故,所以,.故选:C.【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.11B【解析】根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.【详解】设等比数列的公比为,由题意可知中
13、:.由,分别令,可得、,由等比数列的通项公式可得:,因此.故选:B【点睛】本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.12B【解析】求出的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出的范围即可【详解】解:令,则,则,故,如图示:由,得,函数恒过,由,可得,若方程有唯一解,则或,即或;当即图象相切时,根据,解得舍去),则的范围是,故选:【点睛】本题考查函数的零点问题,考查函数方程的转化思想和数形结合思想,属于中档题二、填空题:本题共4小题,每小题5分,共20分。1329【解析】由约束条件作出可行域,化目标函数为以原点为圆心的圆,数形结合得到最优解,联立方程
14、组求得最优解的坐标,代入目标函数得答案.【详解】由约束条件作出可行域如图:联立,解得,目标函数是以原点为圆心,以为半径的圆,由图可知,此圆经过点A时,半径最大,此时也最大,最大值为.所以本题答案为29.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.142【解析】由得,算出,再代入算出即可.【详解】,解得:,则.故答案为:2【点睛】本题主要考查了向量的坐标运算,向量垂直的性质,向量的模的计算.15【解析】求函数的导
15、数,利用导数的几何意义即可求出切线方程.【详解】解:,则,又,即切点坐标为(1,0),则函数在点(1,f(1)处的切线方程为,即,故答案为:.【点睛】本题主要考查导数的几何意义,根据导数和切线斜率之间的关系是解决本题的关键.16【解析】从7人中选出2人则总数有,符合条件数有,后者除以前者即得结果【详解】从7人中随机选出2人的总数有,则记选出的名同学中恰好名男生名女生的概率为事件,故答案为:【点睛】组合数与概率的基本运用,熟悉组合数公式三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解析】(1)建立空间坐标系,通过求向量与向量的夹角,转化为异面直线与直线所成的
16、角的大小;(2)先求出面的一个法向量,再用点到面的距离公式算出即可【详解】以为原点,所在直线分别为轴建系,设所以, ,所以异面直线与直线所成的角的余弦值为 ,异面直线与直线所成的角的大小为(2)因为, ,设是面的一个法向量,所以有 即 ,令 , ,故,又,所以点到平面的距离为.【点睛】本题主要考查向量法求异面直线所成角的大小和点到面的距离,意在考查学生的数学建模以及数学运算能力18(1)证明见解析;(2)为线段上靠近点的四等分点,且坐标为【解析】(1)先通过线面垂直的判定定理证明平面,再根据面面垂直的判定定理即可证明;(2)分析位置关系并建立空间直角坐标系,根据二面角的余弦值与平面法向量夹角的
17、余弦值之间的关系,即可计算出的坐标从而位置可确定.【详解】(1)证明:因为,所以,即.又因为,所以,所以平面.因为平面,所以平面平面.(2)解:连接,因为,是的中点,所以.由(1)知,平面平面,所以平面.以为原点建立如图所示的空间直角坐标系,则平面的一个法向量是,.设,代入上式得,所以.设平面的一个法向量为,由,得.令,得.因为二面角的平面角的大小为,所以,即,解得.所以点为线段上靠近点的四等分点,且坐标为.【点睛】本题考查面面垂直的证明以及利用向量法求解二面角有关的问题,难度一般.(1)证明面面垂直,可通过先证明线面垂直,再证明面面垂直;(2)二面角的余弦值不一定等于平面法向量夹角的余弦值,
18、要注意结合图形分析.19(1);(2)1.【解析】(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2),由(1)通过计算得到,即最大值为1.【详解】(1)将曲线C的参数方程化为普通方程为,即;再将,代入上式,得,故曲线C的极坐标方程为,显然直线l与曲线C相交的两点中,必有一个为原点O,不妨设O与A重合,即.(2)不妨设,则面积为当,即取时,.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,三角形面积的最值问题,是一道容易题.20();()的发分布列为:X2060140400P0.70.10.150.05期望【解析】()由表2可得去各个门诊的人次比例可得2000人中各个门诊的人数,即可知道去三甲医院的总人数,又有60岁所占的百分比可得60岁以上的人数,进而求出任选2人60岁以上的概率;()由去各门诊结算的平均费用及表1所报的百分比可得随机变量的可能取值,再由概率可得的分布列,进而求出概率【详解】解:()由表2可得李村一个结算年度内去门诊就诊人次为2000人次,分别去村卫生室、镇卫生院、二甲医院、三甲医院人数为,而三甲医院门诊就诊的人次中,60岁以上的人次占了,所以去三甲医院门诊就诊的人次中,60岁以上的人数为:人,设从去三甲医院门诊就诊
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年湖北电力建设第一工程公司招聘笔试参考题库含答案解析
- 2025年度个人信用担保装修借款合同范本3篇
- 2025年个人金融理财产品投资合同4篇
- 2025年度油气输送钢管租赁合作合同2篇
- 2025年度个人农田科技种植项目合作协议4篇
- 2025版二手房免税托管与租赁一体化服务合同
- 2025版协议离婚全程法律服务及婚姻财产分割合同3篇
- 2025年度二零二五年度钢厂废钢再生产品销售合同2篇
- 2025版新能源电池生产承包经营合同示范文本3篇
- 2025-2030全球叉车机器人行业调研及趋势分析报告
- 春节拜年的由来习俗来历故事
- 2023年河北省中考数学试卷(含解析)
- 通信电子线路(哈尔滨工程大学)智慧树知到课后章节答案2023年下哈尔滨工程大学
- 《公路勘测细则》(C10-2007 )【可编辑】
- 皮肤恶性黑色素瘤-疾病研究白皮书
- 从心理学看现代家庭教育课件
- C语言程序设计PPT(第7版)高职完整全套教学课件
- 头颈外科临床诊疗指南2021版
- 大国重器北斗系统
- 网球运动知识教育PPT模板
- 防火墙漏洞扫描基础知识
评论
0/150
提交评论