版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数(1+i)(a+i)为纯虚数(i为虚数单位),则实数a=( )A-1B1C0D22已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则( )A3BCD3已知为定义在上的奇
2、函数,且满足当时,则( )ABCD4已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )ABCD5各项都是正数的等比数列的公比,且成等差数列,则的值为()ABCD或6设,是空间两条不同的直线,是空间两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则.其中正确的是( )ABCD7复数满足,则复数在复平面内所对应的点在( )A第一象限B第二象限C第三象限D第四象限8设a,b都是不等于1的正数,则“”是“”的()A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件9已知等比数列的前项和为,且满足,则的值是( )ABCD10已知函数
3、,若函数在上有3个零点,则实数的取值范围为( )ABCD11()ABCD12某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”现已知当时,该命题不成立,那么( )A当时,该命题不成立B当时,该命题成立C当时,该命题不成立D当时,该命题成立二、填空题:本题共4小题,每小题5分,共20分。13函数的极大值为_.14函数的定义域是 15设函数 满足,且当时,又函数,则函数在上的零点个数为_.16设平面向量与的夹角为,且,则的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分) 选修4-4:极坐标与参数方程 在直角坐标系中,曲线的参数方程为(是参
4、数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值18(12分)已知函数的最小正周期是,且当时,取得最大值(1)求的解析式;(2)作出在上的图象(要列表)19(12分)已知函数的最大值为2.()求函数在上的单调递减区间;()中,角所对的边分别是,且,求的面积20(12分)对于很多人来说,提前消费的认识首先是源于信用卡,在那个工资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到
5、一般的现金贷信用卡“忽如一夜春风来”,遍布了各大小城市的大街小巷为了解信用卡在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下列联表(单位:人)经常使用信用卡偶尔或不用信用卡合计40岁及以下15355040岁以上203050合计3565100(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关?(2)现从所抽取的40岁及以下的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;将频率视为概
6、率,从市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为,求随机变量的分布列、数学期望和方差参考公式:,其中参考数据:0.150.100.050.0250.0102.0722.7063.8415.0246.63521(12分)平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为,点(1)求曲线的极坐标方程与直线的直角坐标方程;(2)若直线与曲线交于点,曲线与曲线交于点,求的面积22(10分)已知函数.(1)解不等式;(2)若函数的最小值为,求的最小值.参考答案一、选
7、择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】化简得到z=a-1+a+1i,根据纯虚数概念计算得到答案.【详解】z=1+ia+i=a-1+a+1i为纯虚数,故a-1=0且a+10,即a=1.故选:B.【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.2C【解析】根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.【详解】显然直线过抛物线的焦点如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NA
8、C的中位线,故MD=CE=EA=AC设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故选:C【点睛】本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.3C【解析】由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【详解】由题意,则函数的周期是,所以,又函数为上的奇函数,且当时,所以,.故选:C.【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.4D【解析】设,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数
9、的值;【详解】解:设,由,得,解得或,.又由,得,或,又,代入解得.故选:D【点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.5C【解析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比所满足的等量关系式,解方程即可得结果.详解:根据题意有,即,因为数列各项都是正数,所以,而,故选C.点睛:该题应用题的条件可以求得等比数列的公比,而待求量就是,代入即可得结果.6C【解析】根据线面平行或垂直的有关定理逐一判断即可.【详解】解:、也可能相交或异面,故错:因为,所以或,因为,所以,故对:或,故错:如图因为,在内过点作直线的垂线,则直线,又
10、因为,设经过和相交的平面与交于直线,则又,所以因为, 所以,所以,故对.故选:C【点睛】考查线面平行或垂直的判断,基础题.7B【解析】设,则,可得,即可得到,进而找到对应的点所在象限.【详解】设,则,所以复数在复平面内所对应的点为,在第二象限.故选:B【点睛】本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力.8C【解析】根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可【详解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分条件,故选C【点睛】本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题9C
11、【解析】利用先求出,然后计算出结果.【详解】根据题意,当时,,故当时,,数列是等比数列,则,故,解得,故选.【点睛】本题主要考查了等比数列前项和的表达形式,只要求出数列中的项即可得到结果,较为基础.10B【解析】根据分段函数,分当,将问题转化为的零点问题,用数形结合的方法研究.【详解】当时,令,在是增函数,时,有一个零点,当时,令当时,在上单调递增,当时,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为, 故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.11B【
12、解析】利用复数代数形式的乘除运算化简得答案【详解】故选B【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题12C【解析】写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共
13、20分。13【解析】先求函的定义域,再对函数进行求导,再解不等式得单调区间,进而求得极值点,即可求出函数的极大值【详解】函数,令得,当时,函数单调递增;当时,函数单调递减,当时,函数取到极大值,极大值为.故答案为:【点睛】本题考查利用导数研究函数的极值,考查函数与方程思想、转化与化归思想,考查运算求解能力,求解时注意定义域优先法则的应用14【解析】解:因为,故定义域为151【解析】判断函数为偶函数,周期为2,判断为偶函数,计算,画出函数图像,根据图像到答案.【详解】知,函数为偶函数,函数关于对称。,故函数为周期为2的周期函数,且。为偶函数,当时,函数先增后减。当时,函数先增后减。在同一坐标系下
14、作出两函数在上的图像,发现在内图像共有1个公共点,则函数在上的零点个数为1故答案为:.【点睛】本题考查了函数零点问题,确定函数的奇偶性,对称性,周期性,画出函数图像是解题的关键.16【解析】根据已知条件计算出,结合得出,利用基本不等式可得出的取值范围,利用平面向量的数量积公式可求得的取值范围,进而可得出的取值范围.【详解】,由得,由基本不等式可得,因此,的取值范围为.故答案为:.【点睛】本题考查利用向量的模求解平面向量夹角的取值范围,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) 的极坐标方程为.曲线的直角坐标方程为. (2) 【解析】(1
15、)先得到的一般方程,再由极坐标化直角坐标的公式得到一般方程,将代入得,得到曲线的直角坐标方程;(2)设点、的极坐标分别为,将 分别代入曲线、极坐标方程得:,之后进行化一,可得到最值,此时,可求解.【详解】(1)由得,将代入得:,故曲线的极坐标方程为.由得,将代入得,故曲线的直角坐标方程为.(2)设点、的极坐标分别为,将 分别代入曲线、极坐标方程得:,则 ,其中为锐角,且满足,当时,取最大值,此时, 【点睛】这个题目考查了参数方程化为普通方程的方法,极坐标化为直角坐标的方法,以及极坐标中极径的几何意义,极径代表的是曲线上的点到极点的距离,在参数方程和极坐标方程中,能表示距离的量一个是极径,一个是
16、t的几何意义,其中极径多数用于过极点的曲线,而t的应用更广泛一些.18(1);(2)见解析.【解析】(1)根据函数的最小正周期可求出的值,由该函数的最大值可得出的值,再由,结合的取值范围可求得的值,由此可得出函数的解析式;(2)由计算出的取值范围,据此列表、描点、连线可得出函数在区间上的图象.【详解】(1)因为函数的最小正周期是,所以又因为当时,函数取得最大值,所以,同时,得,因为,所以,所以;(2)因为,所以,列表如下:描点、连线得图象:【点睛】本题考查正弦函数解析式的求解,同时也考查了利用五点作图法作图,考查分析问题与解决问题的能力,属于中等题.19()()【解析】(1)由题意,f(x)的
17、最大值为所以而m0,于是m=,f(x)=2sin(x+).由正弦函数的单调性可得x满足即所以f(x)在0,上的单调递减区间为(2)设ABC的外接圆半径为R,由题意,得化简得sin A+sin B=2sin Asin B.由正弦定理,得 由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0将式代入,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故20(1)不能在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关;(2);分布列见解析,【解析】(1)计算再对照表格分析即可.(2)根据分层抽样的方法可得经常使用信用卡的有人,偶尔或不用信用卡的有人,再根据超几何分
18、布的方法计算3人或4人偶尔或不用信用卡的概率即可.利用二项分布的特点求解变量的分布列、数学期望和方差即可.【详解】(1)由列联表可知,因为,所以不能在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关.(2)依题意,可知所抽取的10名40岁及以下网民中,经常使用信用卡的有(人),偶尔或不用信用卡的有(人).则选出的4人中至少有3人偶尔或不用信用卡的概率.由列联表,可知40岁以上的网民中,抽到经常使用信用卡的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用信用卡的市民的概率为.由题意得,则,.故随机变量的分布列为:0123故随机变量的数学期望为,方差为.【点睛】本题主要考查了独立性检验以及超几何分布与二项分布的知识点,包括分类讨论以及二项分布的数学期望与方差公式等.属于中档题.21(1)(2)【解析】(1)根据题意代入公式化简即可得到.(2)联立极坐标方程通过极坐标的几何意义求解,再求点到直线的距离即可算出三角形面积.【详解】解:(1)曲线,即曲线的极坐标方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年典当行门楼转让合同书版B版
- 2024全面物流配送战略合作合同版B版
- 2024年土地承包协议解除条款详细协议版
- 2024年度企业债券投资与合作协议版B版
- 2024年国际精密仪器销售协议主要协议细节版B版
- 2024年个人独资企业投资协议
- 2024年度单车共享平台保险业务承包合同带眉脚
- 2024年军火武器买卖合同
- 2024参观活动机密信息保护合同版B版
- 2024年度农业产品买卖与种植合同3篇
- 中电建新能源集团股份有限公司云南分公司员工社会招聘笔试真题2023
- ISBAR辅助工具在交班中应用
- 酒吧解约合同范本
- 非织造技术进展
- 护理院医德医风管理方案
- 铸牢中华民族共同体意识-形考任务3-国开(NMG)-参考资料
- 安徽琅琊山抽水蓄能电站地下厂房施工组织设计
- 2024年新中国成立75周年课件
- 以往马克思主义中国化进程与青年学生使命担当(2022年春)学习通超星期末考试答案章节答案2024年
- 绵阳市高中2022级(2025届)高三第一次诊断性考试(一诊)化学试卷(含标准答案)
- 重大事故隐患判定标准与相关事故案例培训课件
评论
0/150
提交评论