2022届甘肃省重点高考数学三模试卷含解析_第1页
2022届甘肃省重点高考数学三模试卷含解析_第2页
2022届甘肃省重点高考数学三模试卷含解析_第3页
2022届甘肃省重点高考数学三模试卷含解析_第4页
2022届甘肃省重点高考数学三模试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为ABCD2已知双曲线的左、右焦点分别为,点P是C的右支上一点,连接与y轴交于点M,若

2、(O为坐标原点),则双曲线C的渐近线方程为( )ABCD3已知函数,若对任意,总存在,使得成立,则实数的取值范围为( )ABCD4下列函数中既关于直线对称,又在区间上为增函数的是( )A.BCD5若函数,在区间上任取三个实数,均存在以,为边长的三角形,则实数的取值范围是( )ABCD6如图,是圆的一条直径,为半圆弧的两个三等分点,则( )ABCD7复数的模为( )AB1C2D8已知向量,则与的夹角为( )ABCD9在等差数列中,若为前项和,则的值是( )A156B124C136D18010抛物线C:y2=2px的焦点F是双曲线C2:x2m-y21-m=10m1的右焦点,点P是曲线C1,C2的交

3、点,点Q在抛物线的准线上,FPQ是以点P为直角顶点的等腰直角三角形,则双曲线C2的离心率为( )A2+1B22+3C210-3D210+311设是虚数单位,则“复数为纯虚数”是“”的( )A充要条件B必要不充分条件C既不充分也不必要条件D充分不必要条件12函数的部分图象如图所示,则的单调递增区间为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图所示,在直角梯形中,、分别是、上的点,且(如图).将四边形沿折起,连接、(如图).在折起的过程中,则下列表述: 平面;四点、可能共面;若,则平面平面;平面与平面可能垂直.其中正确的是_.14在的展开式中,的系数为_用数字作答15如图

4、,在正四棱柱中,P是侧棱上一点,且.设三棱锥的体积为,正四棱柱的体积为V,则的值为_.16已知实数,且由的最大值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知.(1)当时,求不等式的解集;(2)若,证明:.18(12分)已知函数,的最大值为求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,使得函数在区间上的值域为?若存在,求实数k的取值范围;若不存在,请说明理由19(12分)如图,三棱柱中,侧面为菱形,.(1)求证:平面;(2)若,求二面角的余弦值.20(12分)改革开放年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需

5、要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各人,进行问卷测评,所得分数的频率分布直方图如图所示在分以上为交通安全意识强.求的值,并估计该城市驾驶员交通安全意识强的概率;已知交通安全意识强的样本中男女比例为,完成下列列联表,并判断有多大把握认为交通安全意识与性别有关;安全意识强安全意识不强合计男性女性合计用分层抽样的方式从得分在分以下的样本中抽取人,再从人中随机选取人对未来一年内的交通违章情况进行跟踪调查,求至少有人得分低于分的概率.附:其中21(12分)已知函数,其中为自然对数的底数,(1)若曲线在点处的切线与直线

6、平行,求的值;(2)若,问函数有无极值点?若有,请求出极值点的个数;若没有,请说明理由22(10分)设函数其中()若曲线在点处切线的倾斜角为,求的值;()已知导函数在区间上存在零点,证明:当时,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】双曲线的渐近线方程为,由题可知设点,则点到直线的距离为,解得,所以,解得,所以双曲线的实轴的长为,故选B2C【解析】利用三角形与相似得,结合双曲线的定义求得的关系,从而求得双曲线的渐近线方程。【详解】设,由,与相似,所以,即,又因为,所以,所以,即,所以双曲线C的渐近线方程为.故选

7、:C.【点睛】本题考查双曲线几何性质、渐近线方程求解,考查数形结合思想,考查逻辑推理能力和运算求解能力。3C【解析】将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.【详解】依题意,则,当时,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.【点睛】本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.4C【解析】根据函数的对称性和单调性的特点,利用排除法,即可得出答案.【详解】A中,当时,所以不关于直线对称,则错误;B中,所以在区间

8、上为减函数,则错误;D中,而,则,所以不关于直线对称,则错误;故选:C.【点睛】本题考查函数基本性质,根据函数的解析式判断函数的对称性和单调性,属于基础题.5D【解析】利用导数求得在区间上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得的取值范围.【详解】的定义域为,所以在上递减,在上递增,在处取得极小值也即是最小值,所以在区间上的最大值为.要使在区间上任取三个实数,均存在以,为边长的三角形,则需恒成立,且,也即,也即当、时,成立,即,且,解得.所以的取值范围是.故选:D【点睛】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题.6B【解析】连接、,即可得到,

9、再根据平面向量的数量积及运算律计算可得;【详解】解:连接、,是半圆弧的两个三等分点, ,且,所以四边形为棱形,故选:B【点睛】本题考查平面向量的数量积及其运算律的应用,属于基础题.7D【解析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解【详解】解:,复数的模为故选:D【点睛】本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题8B【解析】由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【详解】解:由题意得,设与的夹角为,由于向量夹角范围为:,.故选:B.【点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.9A【解析】因为,可得,根据等差数列

10、前项和,即可求得答案.【详解】,.故选:A.【点睛】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.10A【解析】先由题和抛物线的性质求得点P的坐标和双曲线的半焦距c的值,再利用双曲线的定义可求得a的值,即可求得离心率.【详解】由题意知,抛物线焦点F1,0,准线与x轴交点F(-1,0),双曲线半焦距c=1,设点Q(-1,y) FPQ是以点P为直角顶点的等腰直角三角形,即PF=PQ,结合P点在抛物线上,所以PQ抛物线的准线,从而PFx轴,所以P1,2,2a=PF-PF=22-2 即a=2-1.故双曲线的离心率为e=12-1=2

11、+1.故选A【点睛】本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.11D【解析】结合纯虚数的概念,可得,再结合充分条件和必要条件的定义即可判定选项.【详解】若复数为纯虚数,则,所以,若,不妨设,此时复数,不是纯虚数,所以“复数为纯虚数”是“”的充分不必要条件.故选:D【点睛】本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.12D【解析】由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.【详解】由图象知,所以,又图象过点,所以,故可取,所以令,解得所以函数的

12、单调递增区间为故选:【点睛】本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】连接、交于点,取的中点,证明四边形为平行四边形,可判断命题的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题的正误.综合可得出结论.【详解】对于命题,连接、交于点,取的中点、,连接、,如下图所示:则且,四边形是矩形,且,为的中点,为的中点,且,且,四边形为平行四边形,即,平面,平面,平面,命题正确;对

13、于命题,平面,平面,平面,若四点、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得,则,但四边形为梯形且、为两腰,与相交,矛盾.所以,命题错误;对于命题,连接、,设,则,在中,则为等腰直角三角形,且,且,由余弦定理得,又,平面,平面,、为平面内的两条相交直线,所以,平面,平面,平面平面,命题正确;对于命题,假设平面与平面垂直,过点在平面内作,平面平面,平面平面,平面,平面,平面,又,平面,平面,.,平面,平面,.,显然与不垂直,命题错误.故答案为:.【点睛】本题考查立体几何综合问题,涉及线面平行、面面垂直的证明、以及点共面的判断,考查推理能力,属于中等题.141【解析】利用二项

14、展开式的通项公式求出展开式的通项,令,求出展开式中的系数【详解】二项展开式的通项为 令得的系数为 故答案为1【点睛】利用二项展开式的通项公式是解决二项展开式的特定项问题的工具15【解析】设正四棱柱的底面边长,高,再根据柱体、锥体的体积公式计算可得.【详解】解:设正四棱柱的底面边长,高,则,即故答案为:【点睛】本题考查柱体、锥体的体积计算,属于基础题.16【解析】将其转化为几何意义,然后根据最值的条件求出最大值【详解】由化简得,又实数,图形为圆,如图:,可得,则由几何意义得,则,为求最大值则当过点或点时取最小值,可得所以的最大值是【点睛】本题考查了二元最值问题,将其转化为几何意义,得到圆的方程及

15、斜率问题,对要求的二元二次表达式进行化简,然后求出最值问题,本题有一定难度。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) (2)见证明【解析】(1) 利用零点分段法讨论去掉绝对值求解;(2) 利用绝对值不等式的性质进行证明.【详解】(1)解:当时,不等式可化为.当时,所以;当时,.所以不等式的解集是.(2)证明:由,得,又,所以,即.【点睛】本题主要考查含有绝对值不等式问题的求解,含有绝对值不等式的解法一般是使用零点分段讨论法.18 (1) ;(2) 时,在单调增;时, 在单调递减,在单调递增;时,同理在单调递减,在单调递增;(3)不存在.【解析】分析:(1)利用

16、导数研究函数的单调性,可得当时, 取得极大值,也是最大值,由,可得结果;(2)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(3)假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,进而可得结果.详解:(1) 由题意得,令,解得,当时, ,函数单调递增;当时, ,函数单调递减.所以当时, 取得极大值,也是最大值,所以,解得. (2)的定义域为. 即,则,故在单调增若,而,故,则当时,; 当及时,故在单调递减,在单调递增若,即,同理在单调递减,在单调递增(3)由(1)知, 所以,令,则对恒成立

17、,所以在区间内单调递增, 所以恒成立,所以函数在区间内单调递增. 假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根, 即方程在区间内是否存在两个不相等的实根,令, ,则,设, ,则对恒成立,所以函数在区间内单调递增, 故恒成立,所以,所以函数在区间内单调递增,所以方程在区间内不存在两个不相等的实根.综上所述,不存在区间,使得函数在区间上的值域是.点睛:本题主要考查利用导数判断函数的单调性以及函数的最值值,属于难题.求函数极值、最值的步骤:(1) 确定函数的定义域;(2) 求导数 ;(3) 解方程 求出函数定义域内的所有根;(4) 列表检查 在 的

18、根 左右两侧值的符号,如果左正右负(左增右减),那么 在 处取极大值,如果左负右正(左减右增),那么 在 处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.19(1)见解析(2)【解析】(1)根据菱形性质可知,结合可得,进而可证明,即,即可由线面垂直的判定定理证明平面;(2)结合(1)可证明两两互相垂直.即以为坐标原点,的方向为轴正方向,为单位长度,建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可求得二面角的余弦值.【详解】(1)证明:设,连接,如下图所示:侧面为菱形,且为及的中点, 又,则为直

19、角三角形,又,即,而为平面内的两条相交直线,平面.(2)平面,平面,即,从而两两互相垂直.以为坐标原点,的方向为轴正方向,为单位长度,建立如图的空间直角坐标系,为等边三角形, ,设平面的法向量为,则,即,可取,设平面的法向量为,则.同理可取,由图示可知二面角为锐二面角,二面角的余弦值为.【点睛】本题考查了线面垂直的判定方法,利用空间向量方法求二面角夹角的余弦值,注意建系时先证明三条两两垂直的直线,属于中档题.20,概率为;列联表详见解析,有的把握认为交通安全意识与性别有关;.【解析】根据频率和为列方程求得的值,计算得分在分以上的频率即可;根据题意填写列联表,计算的值,对照临界值得出结论;用分层抽样法求得抽取各分数段人数,用列举法求出基本事件数,计算所求的概率值.【详解】解: 解得. 所以,该

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论