2022届成都实验高三3月份第一次模拟考试数学试卷含解析_第1页
2022届成都实验高三3月份第一次模拟考试数学试卷含解析_第2页
2022届成都实验高三3月份第一次模拟考试数学试卷含解析_第3页
2022届成都实验高三3月份第一次模拟考试数学试卷含解析_第4页
2022届成都实验高三3月份第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若,则的取值范围是( )ABCD2已知函数,的零点分别为,则( )ABCD3已知函数(,且)在区间上的值

2、域为,则( )ABC或D或44已知,满足,且的最大值是最小值的4倍,则的值是( )A4BCD5在平面直角坐标系中,已知点,若动点满足 ,则的取值范围是( )ABCD6下图是我国第2430届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是( )金牌(块)银牌(块)铜牌(块)奖牌总数2451112282516221254261622125027281615592832171463295121281003038272388A中国代表团的奥运奖牌总数一直保持上升趋势B折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C第30届与第29届北京奥运会相比,奥

3、运金牌数、银牌数、铜牌数都有所下降D统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.57函数的图象为C,以下结论中正确的是( )图象C关于直线对称;图象C关于点对称;由y =2sin2x的图象向右平移个单位长度可以得到图象C.ABCD8已知函数是定义在上的偶函数,当时,则,,的大小关系为( )ABCD9已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的( )条件.A充分不必要B必要不充分C充要D既不充分也不必要10在中,角的对边分别为,若,且,则的面积为( )ABCD11如果,那么下列不等式成立的是( )ABCD12( )ABCD二、填空题:本题共4小题,每小题5分,共2

4、0分。13以,为圆心的两圆均过,与轴正半轴分别交于,且满足,则点的轨迹方程为_14已知双曲线(,)的左,右焦点分别为,过点的直线与双曲线的左,右两支分别交于,两点,若,则双曲线的离心率为_. 15已知x,y0,且,则x+y的最小值为_16已知复数(为虚数单位),则的模为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.18(12分)设函数,其中()当为偶函数时,求函数的极值;()若函数在区间上有两个零点,求的取值范围19(12分)在中,内角,所对的边分别是,()求的值;

5、()求的值20(12分)在平面直角坐标系中,直线的参数方程为(为参数),曲线的极坐标方程为()求直线的普通方程及曲线的直角坐标方程;()设点,直线与曲线相交于,求的值21(12分)设函数.()当时,求不等式的解集;()若函数 的图象与直线所围成的四边形面积大于20,求的取值范围.22(10分)已知函数的图象向左平移后与函数图象重合.(1)求和的值;(2)若函数,求的单调递增区间及图象的对称轴方程.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】对分类讨论,代入解析式求出,解不等式,即可求解.【详解】函数,由得或解得.故选

6、:B.【点睛】本题考查利用分段函数性质解不等式,属于基础题.2C【解析】转化函数,的零点为与,的交点,数形结合,即得解.【详解】函数,的零点,即为与,的交点,作出与,的图象,如图所示,可知故选:C【点睛】本题考查了数形结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题.3C【解析】对a进行分类讨论,结合指数函数的单调性及值域求解.【详解】分析知,.讨论:当时,所以,所以;当时,所以,所以.综上,或,故选C.【点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.4D【解析】试题分析:先画出可行域如图:由,得,由,得,当

7、直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.5D【解析】设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【详解】设 ,则, 为点的轨迹方程点的参数方程为(为参数) 则由向量的坐标表达式有:又故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:直接法;定义法;相关点法;参数法;待定系数法6B【解析】根据表格和折线统计图逐一判断即可.【详解】A.中国代表团

8、的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D. 统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为,不正确;故选:B【点睛】此题考查统计图,关键点读懂折线图,属于简单题目.7B【解析】根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.【详解】因为,又,所以正确.,所以正确.将的图象向右平移个单位长度,得,所以错误.所以正确,错误.故选:B【点睛】本小题主要考查三角函数的对称轴、对称中心

9、,考查三角函数图象变换,属于基础题.8C【解析】根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.【详解】依题意得,当时,因为,所以在上单调递增,又在上单调递增,所以在上单调递增,即,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.9B【解析】根据充分必要条件的概念进行判断.【详解】对于充分性:若,则可以平行,相交,异面,故充分性不成立;若,则可得,必要性成立.故选:B【点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论

10、.10C【解析】由,可得,化简利用余弦定理可得,解得即可得出三角形面积【详解】解:,且,化为:,解得故选:【点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题11D【解析】利用函数的单调性、不等式的基本性质即可得出.【详解】,.故选:D.【点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.12D【解析】利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D【点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.二、填空题:本题共4小题,每小题5分,

11、共20分。13【解析】根据圆的性质可知在线段的垂直平分线上,由此得到,同理可得,由对数运算法则可知,从而化简得到,由此确定轨迹方程.【详解】,和的中点坐标为,且在线段的垂直平分线上,即,同理可得:,点的轨迹方程为故答案为:【点睛】本题考查动点轨迹方程的求解问题,关键是能够利用圆的性质和对数运算法则构造出满足的方程,由此得到结果.14【解析】设,由双曲线的定义得出:,由得为等腰三角形,设,根据,可求出,得出,再结合焦点三角形,利用余弦定理:求出和的关系,即可得出离心率.【详解】解:设,由双曲线的定义得出:,由图可知:,又,即,则,为等腰三角形,设,则,即,解得:,则,解得:,解得:,在中,由余弦

12、定理得:,即:,解得: ,即. 故答案为:.【点睛】本题考查双曲线的定义的应用,以及余弦定理的应用,求双曲线离心率.151【解析】处理变形x+yx()+y结合均值不等式求解最值.【详解】x,y0,且,则x+yx()+y1,当且仅当时取等号,此时x4,y2,取得最小值1故答案为:1【点睛】此题考查利用均值不等式求解最值,关键在于熟练掌握均值不等式的适用条件,注意考虑等号成立的条件.16【解析】,所以三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【解析】(1)求出,对分类讨

13、论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证明对于任意恒成立即可.【详解】(1)的定义域为R,且.由,得;由,得.故当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是.(2)由(1)知当时,且.当时,;当时,.当时,直线与的图像有两个交点,实数t的取值范围是.方程有两个不等实根,即.要证,只需证,即证,不妨设.令,则,则要证,即证.令,则.令,则,在上单调递增,.,在上单调递增,即成立,即成立.【点睛】本题考查函数与导数的综合应用,涉及到函数单调性、极值、零点、不等式证

14、明,构造函数函数是解题的关键,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.18()极小值,极大值;()或【解析】()根据偶函数定义列方程,解得.再求导数,根据导函数零点列表分析导函数符号变化规律,即得极值,()先分离变量,转化研究函数,利用导数研究单调性与图象,最后根据图象确定满足条件的的取值范围【详解】()由函数是偶函数,得,即对于任意实数都成立,所以. 此时,则.由,解得. 当x变化时,与的变化情况如下表所示: 00极小值极大值所以在,上单调递减,在上单调递增. 所以有极小值,有极大值. ()由,得. 所以“在区间上有两个零点”等价于“直线与曲线,有且只有两个公共点”. 对函数求

15、导,得. 由,解得,. 当x变化时,与的变化情况如下表所示: 00极小值极大值所以在,上单调递减,在上单调递增. 又因为,所以当或时,直线与曲线,有且只有两个公共点. 即当或时,函数在区间上有两个零点.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.19()()【解析】()根据正弦定理先求得边c,然后由余弦定理可求得边b;()结合二倍角公式及和差公式,即可求得本题答案.【详解】()因为,由正弦定理可得,又,所以,所以根据余弦定理得,解

16、得,;()因为,所以,则【点睛】本题主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,属基础题.20(),;().【解析】()由(为参数)直接消去参数,可得直线的普通方程,把两边同时乘以,结合,可得曲线的直角坐标方程;()把代入,化为关于的一元二次方程,利用根与系数的关系及参数的几何意义求解【详解】解:( )由(为参数),消去参数,可得,即曲线的直角坐标方程为;( )把代入,得设,两点对应的参数分别为,则,不妨设,【点睛】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,明确直线参数方程中参数的几何意义是解题的关键,是中档题21(1)(2)【解析】()当时,不等式为.若,则,解得或,结合得或.若,则,不等式恒成立,结合得.综上所述,不等式解集为.()则的图象与直线所围成的四边形为梯形,令,得,令,得,则梯形上底为, 下底为 11,高为.化简得,解得,结合,得的取值范围为.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论