




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设为抛物线的焦点,为抛物线上三点,若,则( ).A9B6CD2已知集合,则ABCD3已知函数,若函数的图象恒在轴的上方,则实数的取值范围为( )ABCD4已知角的顶点与原点重合,始边与
2、轴的正半轴重合,终边经过点,则( )ABCD5已知,函数在区间内没有最值,给出下列四个结论:在上单调递增;在上没有零点;在上只有一个零点.其中所有正确结论的编号是( )ABCD6已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是( )ABCD7在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是( )ABCD8若非零实数、满足,则下列式子一定正确的是( )ABCD9定义在上的奇函数满足,若,则( )AB0C1D210为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲
3、、乙两人约定去同一个贫困县,则不同的派遣方案共有( )A24B36C48D6411已知与函数和都相切,则不等式组所确定的平面区域在内的面积为( )ABCD12设,为两个平面,则的充要条件是A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面二、填空题:本题共4小题,每小题5分,共20分。13已知多项式满足,则_,_14已知函数有且只有一个零点,则实数的取值范围为_.15集合,若是平面上正八边形的顶点所构成的集合,则下列说法正确的为_的值可以为2;的值可以为;的值可以为;16已知圆柱的上下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为36的正方形,则该圆
4、柱的体积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知各项均不相等的等差数列的前项和为, 且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.18(12分)在中,角所对的边分别为,若,且.(1)求角的值;(2)求的最大值.19(12分)已知.(1)若是上的增函数,求的取值范围;(2)若函数有两个极值点,判断函数零点的个数.20(12分)已知函数.(1)解不等式;(2)使得,求实数的取值范围.21(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.()求直线的直角坐标方程与曲线的
5、普通方程;()已知点设直线与曲线相交于两点,求的值.22(10分)已知.() 若,求不等式的解集;(),求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】设,由可得,利用定义将用表示即可.【详解】设,由及,得,故,所以.故选:C.【点睛】本题考查利用抛物线定义求焦半径的问题,考查学生等价转化的能力,是一道容易题.2D【解析】因为,所以,故选D3B【解析】函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围【详解】由题在上恒成立.
6、即,的图象永远在的上方,设与的切点,则,解得,易知越小,图象越靠上,所以.故选:B【点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围4A【解析】由已知可得,根据二倍角公式即可求解.【详解】角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则,.故选:A.【点睛】本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.5A【解析】先根据函数在区间内没有最值求出或.再根据已知求出,判断函数的单调性和零点情况得解.【详解】因为函数在区间内没有最值
7、.所以,或解得或.又,所以.令.可得.且在上单调递减.当时,且,所以在上只有一个零点.所以正确结论的编号 故选:A.【点睛】本题主要考查三角函数的图象和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平.6B【解析】由题意可得,且,故有,再根据,求得,由可得的最大值,检验的这个值满足条件【详解】解:函数,为的零点,为图象的对称轴,且,、,即为奇数在,单调,由可得的最大值为1当时,由为图象的对称轴,可得,故有,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题7A【解析】根据正弦定理可
8、得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【详解】中,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,即,即,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【点睛】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.8C【解析】令,则,将指数式化成对数式得、后,然后取绝对值作差比较可得【详解】令,则,因此,.故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题9C【解析】首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数
9、,得,而,所以,所以,即的周期为.由于,所以,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.10B【解析】根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的方案.故共有36种不同的派遣方案,故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.11B【解析】根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.【详解】.设直线与相切于点,斜率为,所以切线方程为,化简得.令,解得,所以切线方程为,化简得.
10、由对比系数得,化简得.构造函数,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.故选:B【点睛】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.12B【解析】本题考查了空间
11、两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断【详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误二、填空题:本题共4小题,每小题5分,共20分。13 【解析】多项式 满足令,得,则该多项式的一次项系数为令,得故答案为5,7214【解析】当时,转化条件得有唯一实数根,令,通过求导得到的单调性后数形结合即可得解.【
12、详解】当时,故不是函数的零点;当时,即,令,当时,;当时,的单调减区间为,增区间为,又 ,可作出的草图,如图:则要使有唯一实数根,则.故答案为:.【点睛】本题考查了导数的应用,考查了转化化归思想和数形结合思想,属于难题.15【解析】根据对称性,只需研究第一象限的情况,计算:,得到,得到答案.【详解】如图所示:根据对称性,只需研究第一象限的情况,集合:,故,即或,集合:,是平面上正八边形的顶点所构成的集合,故所在的直线的倾斜角为,故:,解得,此时,此时.故答案为:.【点睛】本题考查了根据集合的交集求参数,意在考查学生的计算能力和转化能力,利用对称性是解题的关键.16【解析】由轴截面是正方形,易求
13、底面半径和高,则圆柱的体积易求.【详解】解:因为轴截面是正方形,且面积是36,所以圆柱的底面直径和高都是6故答案为:【点睛】考查圆柱的轴截面和其体积的求法,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)【解析】试题分析:(1)设公差为,列出关于的方程组,求解的值,即可得到数列的通项公式;(2)由(1)可得,即可利用裂项相消求解数列的和.试题解析:(1)设公差为.由已知得,解得或(舍去), 所以,故.(2),考点:等差数列的通项公式;数列的求和.18(1);(2).【解析】(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函数值域的
14、方法即可得到答案.【详解】(1)因为,所以.在中,由正弦定理得,所以,即.在中,由余弦定理得,又因为,所以.(2)由(1)得,在中,所以.因为,所以,所以当,即时,有最大值1,所以的最大值为.【点睛】本题考查正余弦定理解三角形,涉及到两角差的正弦公式、辅助角公式、向量数量积的坐标运算,是一道容易题.19 (1) (2) 三个零点【解析】(1) 由题意知恒成立,构造函数,对函数求导,求得函数最值,进而得到结果;(2)当时先对函数求导研究函数的单调性可得到函数有两个极值点,再证,.【详解】(1)由得,由题意知恒成立,即,设,时,递减,时,递增;故,即,故的取值范围是.(2)当时,单调,无极值;当时
15、,一方面,且在递减,所以在区间有一个零点.另一方面,设 ,则,从而在递增,则,即,又在递增,所以在区间有一个零点.因此,当时在和各有一个零点,将这两个零点记为, ,当时,即;当时,即;当时,即:从而在递增,在递减,在递增;于是是函数的极大值点,是函数的极小值点.下面证明:,由得,即,由得 ,令,则,当时,递减,则,而,故;当时,递减,则,而,故;一方面,因为,又,且在递增,所以在上有一个零点,即在上有一个零点.另一方面,根据得,则有: ,又,且在递增,故在上有一个零点,故在上有一个零点.又,故有三个零点.【点睛】本题考查函数的零点,导数的综合应用在研究函数零点时,有一种方法是把函数的零点转化为
16、方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论20(1);(2)或 .【解析】(1)分段讨论得出函数的解析式,再分范围解不等式,可得解集;(2)先求出函数的最小值,再建立关于的不等式,可求得实数的取值范围.【详解】(1)因为 ,所以当时,;当时, 无解;当时,;综上,不等式的解集为;(2),又, 或 .【点睛】本题考查分段函数,绝对值不等式的解法,以及关于函数的存在和任意的问题,属于中档题.21()直线的直角坐标方程为;曲线的普通方程为;().【解析】(I)利用参数方程、普通方程、极坐标方程间的互化公式即可;(II)将直线参数方程代入抛物线的普通方程,可得,而根据直线参数方程的几何意义,知,代入即可解决.【详解】由可得直线的直角坐标方程为由曲线的参数方程,消去参数可得曲线的普通方程为.易知点在直线上,直线的参数方程为(为参数).将直线的参数方程代入曲线的普通方程,并整理得.设是方程的两根,则有.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,直线参数方程的几何意义,是一道容
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论