厌氧生物处理机理研究报告厌氧反应四个阶段_第1页
厌氧生物处理机理研究报告厌氧反应四个阶段_第2页
厌氧生物处理机理研究报告厌氧反应四个阶段_第3页
厌氧生物处理机理研究报告厌氧反应四个阶段_第4页
厌氧生物处理机理研究报告厌氧反应四个阶段_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、. 厌氧生物处理机理研究厌氧反响四个阶段一、概述厌氧生物处理技术在水处理行业中一直都受到环保工作者们的青睐,由于其具有良好的去除效果,更高的反响速率和对毒性物质更好的适应,更重要的是由于其相对好氧生物处理废水来说不需要为氧的传递提供大量的能耗,使得厌氧生物处理在水处理行业中应用十分广泛。但由于总体反响式基于莫诺方程的厌氧处理受到低浓度废水Ks的限制,所以厌氧在处理低浓度废水方面没有太大的空间,可最近的一些报道和试验说明,厌氧如果提供适宜的外部条件,在处理低浓度废水方面仍然有非常高的处理效果。我们可以根据厌氧反响的原理加以动力学方程推导出厌氧生物处理低浓度废水尤其在处理生活污水方面的适宜条件。二

2、、厌氧反响四个阶段一般来说,废水中复杂有机物物料比拟多,通过厌氧分解分四个阶段加以降解:1水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌的细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。废水中典型的有机物质比方纤维素被纤维素酶分解成纤维二糖和葡萄糖,淀粉被分解成麦芽糖和葡萄糖,蛋白质被分解成短肽和氨基酸。分解后的这些小分子能够通过细胞壁进入到细胞的体进展下一步的分解。2酸化阶段:上述的小分子有机物进入到细胞体转化成更为简单的化合物并被分配到细胞外,这一阶段的主要产物为挥发性脂肪酸VFA,同时还有局部的醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生。3产乙酸阶段:在此阶段,上一

3、步的产物进一步被转化成乙酸、碳酸、氢气以及新的细胞物质。4产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸和甲醇都被转化成甲烷、二氧化碳和新的细胞物质。这一阶段也是整个厌氧过程最为重要的阶段和整个厌氧反响过程的限速阶段。再上述四个阶段中,有人认为第二个阶段和第三个阶段可以分为一个阶段,在这两个阶段的反响是在同一类细菌体类完成的。前三个阶段的反响速度很快,如果用莫诺方程来模拟前三个阶段的反响速率的话,Ks半速率常数可以在50mg/l以下,可以到达5KgCOD/KgMLSS.d。而第四个反响阶段通常很慢,同时也是最为重要的反响过程,在前面几个阶段中,废水的中污染物质只是形态上发生变化,COD几乎没有

4、什么去除,只是在第四个阶段中污染物质变成甲烷等气体,使废水中COD大幅度下降。同时在第四个阶段产生大量的碱度这与前三个阶段产生的有机酸相平衡,维持废水中的PH稳定,保证反响的连续进展。三水解反响水解可定义为复杂的非溶解性的聚合物被转化成简单的溶解性单体和二聚体的过程。水解反响针对不同的废水类型差异很大,这要取决于胞外酶能否有效的接触到底物。因此,大的颗粒比小颗粒底物要难降解很多,比方造纸废水、印染废水和制药废水的木质素、大分子纤维素就很难水解。水解速度的可由以下动力学方程加以描述:=o/(1+Kh.T)可降解的非溶解性底物浓度g/l;o非溶解性底物的初始浓度g/l;Kh水解常数d1;T停留时间

5、d。一般来说,影响Kh的因素很多,很难确定一个特定的方程来求解Kh,但我们可以根据一些特定条件的Kh,反推导出水解反响器的容积和最正确反响条件。在实际工程实施中,有条件的话,最好针对要处理的废水作一些Kh的测试工作。通过对国外一些报道的研究,提出在低温下水解对脂肪和蛋白质的降解速率非常慢,这个时候,可以不考虑厌氧处理方式。对于生活污水来说,在温度15的情况下,Kh0.2左右。但在水解阶段我们不需要过多的COD去除效果,而且在一个反响器中你很难严格的把厌氧反响的几个阶段区分开来,一旦停留时间过长,对工程的经济性就不太实用。如果就单独的水解反响针对生活污水来说,COD可以控制到0.1的去除效果就可

6、以了。把这些参数和给定的条件代入到水解动力学方程中,可以得到停留水解停留时间:T=13.44h这对于水解和后续阶段处于一个反响器中厌氧处理单元来说是一个很短的时间,在实际工程中也完全可以实现。如果有条件的地方我们可以适当提高废水的反响温度,这样反响时间还会大大缩短。而且一般对于城市污水来说,长的排水管网和废水中本生的生物多样性,所以当废水流到废水处理场时,这个过程也在很大程度上完成,到目前为止还没有看到关于水解作为生活污水厌氧反响的限速报道。四发酵酸化反响发酵可以被定义为有机化合物既作为电子受体也作为电子供体的生物降解过程,在此过程中有机物被转化成以挥发性脂肪酸为主的末端产物。酸化过程是由大量

7、的、多种多样的发酵细菌来完成的,在这些细菌局部是专性厌氧菌,只有1是兼性厌氧菌,但正是这1的兼性菌在反响器受到氧气的冲击时,能迅速消耗掉这些氧气,保持废水低的氧化复原电位,同时也保护了产甲烷菌的运行条件。酸化过程的底物取决于厌氧降解的条件、底物种类和参与酸化的微生物种群。对于一个稳态的反响器来说,乙酸、二氧化碳、氢气则是酸化反响的最主要产物。这些都是产甲烷阶段所需要的底物。在这个阶段产生两种重要的厌氧反响是否正常的底物就是挥发性脂肪酸VFA和氨氮。VFA过高会使废水的PH下降,逐渐影响到产甲烷菌的正常进展,使产气量减小,同时整个反响的自然碱度也会较少,系统平衡PH的能力减弱,整个反响会形成恶性

8、循环,使得整个反响器最终失败。氨氮它起到一个平衡的作用,一方面,它能够中和一局部VFA,使废水PH具有更大的缓冲能力,同时又给生物体合成自生生长需要的营养物质,但过高的氨氮会给微生物带来毒性,废水中的氨氮主要是由于蛋白质的分解带来的,典型的生活污水中含有20-50mg/l左右的氨氮,这个围是厌氧微生物非常理想的围。另外一个重要指标就是废水中氢气的浓度,以含碳17的脂肪酸降解为例:CH3(CH2)15COO-+14H2O7CH3COO-+CH3CH2COO-+7H+14脂肪酸的降解都会产生大量的氢气,如果要使上述反响得以正常进展,必须在下一反响中消耗掉足够的氢气,来维持这一反响的平衡。如果废水的

9、氢气指标过高,说明废水的产甲烷反响已经受到严重抑制,需要进展修复,一般来说氢气浓度升高是伴随PH指标降低的,所以不难监测到废水中氢气的变化情况,但废水本身有一定的缓冲能力,所以完全通过PH下降来判断氢气浓度的变化有一定的滞后性,所以通过监测废水中氢气浓度的变化是对整个反响器反响状态一个最快捷的表现形式。五产乙酸反响发酵阶段的产物挥发性脂肪酸VFA在产乙酸阶段进一步降解成乙酸,其常用反响式如以下几种:CH3CHOHCOO-+2H2OCH3COO-+HCO3-+H+2H2G0=-4.2KJ/MOLCH3CH2OH+H2OCH3COO-+H+2H2OG0=9.6KJ/MOLCH3CH2CH2COO-

10、+2H2O2CH3COO-+H+2H2G0=48.1KJ/MOLCH3CH2COO-+3H2OCH3COO-+HCO3-+H+3H2G0=76.1KJ/MOL4CH3OH+2CO23CH3COO-+2H2OG0=-2.9KJ/MOL2HCO3-+4H2+H+CH3COO-+4H2OG0=-70.3KJ/MOL从上面的反响方程式可以看出,乙醇、丁酸和丙酸不会被降解,但由于后续反响中氢的消耗,使得反响能够向右进展,在一阶段,氢的平衡显得更加重要,同时后续的产甲烷过程为这一阶段的转化提供能量。实际上这一阶段和前面的发酵阶段都是由同一类细菌完成,都在细菌体进展,并且产物排放到水体中,界限并没有十分清楚

11、,在设计反响器时,没有足够的理由把他们分开。六产甲烷反响在厌氧反响中,大约有70左右的甲烷由乙酸歧化菌产生,这也是这几个阶段中遵循莫诺方程反响的阶段。另一类产生甲烷的微生物是由氢气和二氧化碳形成的。在正常条件下,他们大约占30左右。其中约有一般的嗜氢细菌也能利用甲酸产生甲烷。最主要的产甲烷过程反响有:CH3COO-+H2OCH4+HCO3-G0=-31.0KJ/MOLHCO3-+H+4H2CH4+3H2OG0=-135.6KJ/MOL4CH3OH3CH4+CO2+2H2OG0=-312KJ/MOL4HCOO-+2H+CH4+CO2+2HCO3-G0=-32.9KJ/MOL在甲烷的形成过程中,主

12、要的中间产物是甲基辅酶MCH3-S-CH2-SO3-。在甲基辅酶M复原成甲烷的过程中,需要作用非常重要的甲基复原酶,其中含有重要的金属离子Ni+。这对生活污水来说是比拟缺乏微量金属离子,所以在生活污水的厌氧生物处理过程中补充一定的微量金属离子是非常必要的。同时可以查看中国污水处理工程网更多技术文档。七低浓度废水反响速率的选择以生活污水为例,一般来说影响废水厌氧反响速率的因素有很多,包括反响温度、废水的毒性、原水基质浓度、原水的PH值、传质效率、营养物质的平衡、微量元素的催化作用等等。对于生活污水来说,影响比拟大的因素有反响温度、原水的基质浓度、传质效率以及微量元素的催化。因为生活污水的营养比和

13、PH值被公认为非常适合生物的生长的。在前面的表达中,已经提及了厌氧反响的前三个阶段对于生活污水来说,很快就可以完成,尤其水解阶段,不存在传质的限制,同时通常长距离的管网也给水解提供了足够的时间。因此我们提出的厌氧处理低浓度废水设计思想中,主要考虑产甲烷过程作为限速步骤。由于产甲烷阶段遵循莫诺方程,整个速率确实定以莫诺方程为根底。在上式中,很难把总体反响的Ks值估算出来,因为它受到的影响因素很多,对于不同类型的废水差异很大。对于生活污水来说可以根据不同的单个因素影响列成很多分式莫诺方程,最后各式相乘再加上修正系数,这个方程可以得出比拟接近的Ks值,作为厌氧处理生活污水时的参考设计数据。具体思想如

14、下:1、假定条件:a、厌氧处理该污水过程中主要受温度、传质速率、基质浓度以及微量元素的影响;b、微量元素可以通过外界条件的干预给予补充;c、反响器为一体化反响器;d、产甲烷单元反响也近似遵循莫诺方程。2、模型总体方程Kst温度响应半反响速率常数mg/lKsv传质速率半反响速率常数mg/lK修正系数在上式中,Kst针对不同的废水是可以确定的,Ksv对不同的反响器差异比拟大,我们可以通过外界干预给以降低到一固定值偏差不大的围,比方通过强制搅拌或是提高反响器的高径比,出水回流都是比拟好的解决方法。通过众多的工程实例以及文献报道,初步确定Kst在15摄氏度时针对生活污水值为3200mg/l左右。Ksv

15、在有搅拌足够的情况下15摄氏度时针对生活污水值为532mg/l。K值在地区可以取0.85,ma*按照碳水化合物可取5KgCOD/KgMLSS.d,这样针对进水浓度为300mg/l的生活污水最大反响速率为:15KgCOD/KgMLSS.d300/3200300300/532+3000.850.132KgCOD/KgMLSS.d在一体式反响器中由于出水浓度很低,导致总体反响速率降低,但对于几种高效厌氧反响器包括UASB、EGSB、IC循环反响器、流化床、上流式厌氧生物滤池可以假设其为推流式厌氧反响器,浓度随反响器高度的增加均匀的减少,即反响器中的浓度分布与高度成反比。这样我们可以通过设定的出水浓度

16、计算一个反响器最低反响速率,最后取平均值就得到整个反响器的平均反响速率。同样根据前面的莫诺模型,得出出水COD80mg/l的厌氧反响速率:25KgCOD/KgMLSS.d80/32008080/532+800.850.014KgCOD/KgMLSS.d所以反响器的平均反响速率为1+2/20.073KgCOD/KgMLSS.d如果我们能够在反响器保持稳定的污泥浓度为20KgMLSS/m3,则整个反响器的容积反响速率为FV0.073KgCOD/KgMLSS.d20KgMLSS/m31.46KgCOD/m3.d在实际反响器的设计时,需要考虑污泥、气体、液体别离的容积,反响局部容积只占整个反响器容积的

17、40,这样实际整个反响器设计平均负荷变为:FV1.46KgCOD/m3.d0.40.99KgCOD/m3.d核算停留时间为:HRT7.5h八中试与工程应用应注意的问题通过上述实验室里理论的研究和推断,采用新型高效厌氧反响器处理城市污水完全是可行的。在中试和工程设计中,我们应该从上述分析角度出发,完善厌氧系统,以下措施是必要的:1、在反响器的形式上优先考虑推流式的活塞反响器;2、为了减少低浓度时,基质传质速率包括液相中的有机物向菌胶团或颗粒污泥传质以及细胞壁外向细胞壁传质对整个反响速率的影响,在反响器底部投加一定数量的活性炭作为载体是非常有必要的,但考虑到沼气和布水的影响,投加数量不宜过多,初步

18、考虑为40g/L颗粒状活性炭;3、建议在反响器的上部设置气、水、固三相别离系统;4、设置一套完善的出水回流系统,并可以调节回流量,用仪表显示并控制;5、出水设置MLSS浓度计加以监测,随时了解反响器的污泥情况;6、在反响器的底部、中部、顶部设置碱度监测系统,随时监测反响器的生物反响条件;7、设置一套启动用的营养物质和微量元素添加系统是十分有必要的;8、设置温度传感器,了解原水水温的变化对反响器的冲击影响;9、进水设置流量传感器和有机物在线监测仪器,并通过程序加以显示到中央控制室中,随时计算进水污泥负荷以及上升流速;10、必要的预处理措施,比方除渣处理措施;11、在北方的废水处理系统,反响器建议修建在室或采取严密的保温措施;12、其他必要的辅助系统,如消除泥水界面泥渣层的喷淋系统。同样,一套设计好的系统,没有按照反响机理进展的启动,是不能称之为成功的系统的,在这里,根据一些工程实践以及国外一些报道,笔者对厌氧处理低浓度废水时启动提出一些参考性建议针对生活污

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论