2021-2022学年上海市青浦高三下学期联考数学试题含解析_第1页
2021-2022学年上海市青浦高三下学期联考数学试题含解析_第2页
2021-2022学年上海市青浦高三下学期联考数学试题含解析_第3页
2021-2022学年上海市青浦高三下学期联考数学试题含解析_第4页
2021-2022学年上海市青浦高三下学期联考数学试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则等于( )ABCD2设命题:,则为A,B,C,D,3执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )ABCD4已知三棱柱( )ABCD5是恒成立的( )A充分不必要条件B必要不充分条件C充要条件D既不

2、充分也不必要条件6下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是( )A深圳的变化幅度最小,北京的平均价格最高B天津的往返机票平均价格变化最大C上海和广州的往返机票平均价格基本相当D相比于上一年同期,其中四个城市的往返机票平均价格在增加7已知定义在上的函数满足,且当时,则方程的最小实根的值为( )ABCD8已知集合,则()ABCD9已知复数(1+i)(a+i)为纯虚数(i为虚数单位),则实数a=( )A-1B1C0D210已知为虚数单位,若复数满足,则( )ABCD11若的展开式中的系数为-45,则

3、实数的值为()AB2CD12复数的共轭复数在复平面内所对应的点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13已知数列的前项和为,则满足的正整数的值为_.14的展开式中常数项是_.15的展开式中的系数为_16记等差数列和的前项和分别为和,若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,(其中).(1)求;(2)求证:当时,18(12分)已知椭圆的短轴长为,离心率,其右焦点为.(1)求椭圆的方程;(2)过作夹角为的两条直线分别交椭圆于和,求的取值范围.19(12分)如图,四棱锥中,四边形是矩形,为正

4、三角形,且平面平面,、分别为、的中点.(1)证明:平面平面;(2)求二面角的余弦值.20(12分)已知函数,.(1)当为何值时,轴为曲线的切线;(2)用表示、中的最大值,设函数,当时,讨论零点的个数.21(12分)已知函数.(1)解不等式;(2)若函数的最小值为,求的最小值.22(10分)等差数列中,分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的组合,并求数列的通项公式;(2)记(1)中您选择的的前项和为,判断是否存在正整数,使得,成等比数列,若有,请求出的值;若没有,请说明理由.参考答

5、案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】进行交集的运算即可【详解】,1,2,1,故选:【点睛】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题2D【解析】直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.3B【解析】根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,不成立,运行第二次,不成立,运行第三次,不成立,运行第四

6、次,不成立,运行第五次,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.4C【解析】因为直三棱柱中,AB3,AC4,AA112,ABAC,所以BC5,且BC为过底面ABC的截面圆的直径取BC中点D,则OD底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R13,即R5A【解析】设 成立;反之,满足 ,但,故选A.6D【解析】根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项.【详解】对于A选项,根据折

7、线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确.对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.故选:D【点睛】本小题主要考查根据条形图和折线图进行数据分析,属于基础题.7C【解析】先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.【详解】当时,所以,故当时,所以,而,所以,又当时,的极大值为1,所

8、以当时,的极大值为,设方程的最小实根为,则,即,此时令,得,所以最小实根为411.故选:C.【点睛】本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.8A【解析】根据对数性质可知,再根据集合的交集运算即可求解.【详解】,集合,由交集运算可得.故选:A.【点睛】本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.9B【解析】化简得到z=a-1+a+1i,根据纯虚数概念计算得到答案.【详解】z=1+ia+i=a-1+a+1i为纯虚数,故a-1=0且a+10,即a=1.故选:B.【点睛】本题考查了根据复数类型

9、求参数,意在考查学生的计算能力.10A【解析】分析:题设中复数满足的等式可以化为,利用复数的四则运算可以求出.详解:由题设有,故,故选A.点睛:本题考查复数的四则运算和复数概念中的共轭复数,属于基础题.11D【解析】将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.【详解】所以展开式中的系数为,解得.故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.12D【解析】由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标得结论【详解】,对应点为,在第四象限故选:D.【点睛】本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义掌握复

10、数的运算法则是解题关键二、填空题:本题共4小题,每小题5分,共20分。136【解析】已知,利用,求出通项,然后即可求解【详解】,当时,;当时,故数列是首项为-2,公比为2的等比数列,.又,.【点睛】本题考查通项求解问题,属于基础题14-160【解析】试题分析:常数项为.考点:二项展开式系数问题.15【解析】在二项展开式的通项中令的指数为,求出参数值,然后代入通项可得出结果.【详解】的展开式的通项为,令,因此,的展开式中的系数为.故答案为:.【点睛】本题考查二项展开式中指定项系数的求解,涉及二项展开式通项的应用,考查计算能力,属于基础题.16【解析】结合等差数列的前项和公式,可得,求解即可.【详

11、解】由题意,因为,所以.故答案为:.【点睛】本题考查了等差数列的前项和公式及等差中项的应用,考查了学生的计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)见解析【解析】(1)取,则;取,则,; (2)要证,只需证,当时,;假设当时,结论成立,即,两边同乘以3 得:而,即时结论也成立,当时,成立.综上原不等式获证.18(1);(2).【解析】(1)由已知短轴长求出,离心率求出关系,结合,即可求解;(2)当直线的斜率都存在时,不妨设直线的方程为,直线与椭圆方程联立,利用相交弦长公式求出,斜率为,求出,得到关于的表达式,根据表达式的特点用“”判别

12、式法求出范围,当有一斜率不存在时,另一条斜率为,根据弦长公式,求出,即可求出结论.【详解】(1)由得,又由得,则,故椭圆的方程为.(2)由(1)知,当直线的斜率都存在时,由对称性不妨设直线的方程为,由,设,则,则,由椭圆对称性可设直线的斜率为,则,.令,则,当时,当时,由得,所以,即,且.当直线的斜率其中一条不存在时,根据对称性不妨设设直线的方程为,斜率不存在,则,此时.若设的方程为,斜率不存在,则,综上可知的取值范围是.【点睛】本题考查椭圆标准方程、直线与椭圆的位置关系,注意根与系数关系、弦长公式、函数最值、椭圆性质的合理应用,意在考查逻辑推理、计算求解能力,属于难题.19(1)见解析;(2

13、)【解析】(1)取中点,中点,连接,.设交于,则为的中点,连接.通过证明,证得平面,由此证得平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】(1)取中点,中点,连接,.设交于,则为的中点,连接.设,则,.由已知,平面,.,平面,平面,平面平面.(2)由(1)及已知可得平面,建立如图所示的空间坐标系,设,则,设平面的法向量为,令得.设平面的法向量为,令得,二面角的余弦值为.【点睛】本小题主要考查面面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20(1);(2)见解析.【解析】(1)设切点坐标为,然后根据可解得实数的值;(2)

14、令,然后对实数进行分类讨论,结合和的符号来确定函数的零点个数.【详解】(1),设曲线与轴相切于点,则,即,解得.所以,当时,轴为曲线的切线;(2)令,则,由,得.当时,此时,函数为增函数;当时,此时,函数为减函数.,.当,即当时,函数有一个零点;当,即当时,函数有两个零点;当,即当时,函数有三个零点;当,即当时,函数有两个零点;当,即当时,函数只有一个零点.综上所述,当或时,函数只有一个零点;当或时,函数有两个零点;当时,函数有三个零点.【点睛】本题考查了利用导数的几何意义研究切线方程和利用导数研究函数的单调性与极值,关键是分类讨论思想的应用,属难题21(1)(2)【解析】(1)用分类讨论思想去掉绝对值符号后可解不等式;(2)由(1)得的最小值为4,则由,代换后用基本不等式可得最小值【详解】解:(1)讨论:当时,即,此时无解;当时,;当时,.所求不等式的解集为(2)分析知,函数的最小值为4,当且仅当时等号成立.的最小值为4.【点睛】本题考查解绝对值不等式,考查用基本不等式求最小值解绝对值不等式的方法是分类讨论思想22(1)见解析,或;(2)存在,.【解析】(1)满足题意有两种组合:,分别计算即可;(2)由(1)分别讨论两种情况,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论