版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。(4)利用对应线段成比例。(5)利用面面平行,等等。(1) 通过“平移”再利用平行四边形的性质1如图,四棱锥PABCD的底面是平行四边形,点E、F 分 别为棱AB、 PD的中点求证:AF平面PCE;(第1题图)分析:取PC的中点G,连EG.,FG,则易证AEGF是平行四边形2、如图,已知直角梯形ABCD中,ABCD,ABBC,AB1,BC2,CD1,过A作AECD,垂足为E,G、F分别为AD
2、、CE的中点,现将ADE沿AE折叠,使得DEEC.()求证:BC面CDE; ()求证:FG面BCD;分析:取DB的中点H,连GH,HC则易证FGHC是平行四边形3、已知直三棱柱ABCA1B1C1中,D, E, F分别为AA1, CC1, AB的中点,M为BE的中点, ACBE. 求证:()C1DBC; ()C1D平面B1FM. 分析:连EA,易证C1EAD是平行四边形,于是MF/EA4、如图所示, 四棱锥PABCD底面是直角梯形, CD=2AB, E为PC的中点, 证明: ;分析::取PD的中点F,连EF,AF则易证ABEF是平行四边形(2) 利用三角形中位线的性质ABCDEFGM5、如图,已
3、知、分别是四面体的棱、的中点,求证:平面。分析:连MD交GF于H,易证EH是AMD的中位线6、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。 求证: PA 平面BDE 7如图,三棱柱ABCA1B1C1中, D为AC的中点. 求证:AB1/面BDC1; 分析:连B1C交BC1于点E,易证ED是B1AC的中位线8、如图,平面平面,四边形与都是直角梯形,分别为的中点()证明:四边形是平行四边形;()四点是否共面?为什么?(.3) 利用平行四边形的性质9正方体ABCDA1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证: D1O/平面A1BC1;分析:连D1B1交A1C1于O
4、1点,易证四边形OBB1O1是平行四边形PEDCBA10、在四棱锥P-ABCD中,ABCD,AB=DC,.求证:AE平面PBC;分析:取PC的中点F,连EF则易证ABFE是平行四边形11、在如图所示的几何体中,四边形ABCD为平行四边形,ACB=,平面,EF,.=.()若是线段的中点,求证:平面;()若=,求二面角-的大小(I)证法一:因为EF/AB,FG/BC,EG/AC,所以由于AB=2EF,因此,BC=2FC,连接AF,由于FG/BC,在中,M是线段AD的中点,则AM/BC,且因此FG/AM且FG=AM,所以四边形AFGM为平行四边形,因此GM/FA。又平面ABFE,平面ABFE,所以G
5、M/平面AB。(4)利用对应线段成比例12、如图:S是平行四边形ABCD平面外一点,M、N分别是SA、BD上的点,且=, 求证:MN平面SDC分析:过M作ME/AD,过N作NF/AD利用相似比易证MNFE是平行四边形AFAEABACADAMANA13、如图正方形ABCD与ABEF交于AB,M,N分别为AC和BF上的点且AM=FN求证:MN平面BEC分析:过M作MG/AB,过N作NH/AB利用相似比易证MNHG是平行四边形(5)利用面面平行14、如图,三棱锥中,底面,PB=BC=CA,为的中点,为的中点,点在上,且.(1)求证:平面;(2)求证:平面;分析: 取AF的中点N,连CN、MN,易证平
6、面CMN/EFB直线、平面平行的判定及其性质 经典题(附详细解答)一、选择题1下列条件中,能判断两个平面平行的是( )A一个平面内的一条直线平行于另一个平面;B一个平面内的两条直线平行于另一个平面C一个平面内有无数条直线平行于另一个平面D一个平面内任何一条直线都平行于另一个平面 2E,F,G分别是四面体ABCD的棱BC,CD,DA的中点,则此四面体中与过E,F,G的截面平行的棱的条数是 A0 B1 C2 D3 3 直线及平面,使成立的条件是( ) A B C D4若直线m不平行于平面,且m,则下列结论成立的是( )A内的所有直线与m异面 B内不存在与m平行的直线C内存在唯一的直线与m平行 D内
7、的直线与m都相交5下列命题中,假命题的个数是( ) 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交; 过平面外一点有且只有一条直线和这个平面平行; 过直线外一点有且只有一个平面和这条直线平行; 平行于同一条直线的两条直线和同一平面平行; a和b异面,则经过b存在唯一一个平面与平行A4 B3 C2D16已知空间四边形中,分别是的中点,则下列判断正确的是( ) A B C D二、填空题7在四面体ABCD中,M,N分别是面ACD,BCD的重心,则四面体的四个面中与MN平行的是_.8如下图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB/面MNP
8、的图形的序号的是 9正方体ABCD-A1B1C1D1中,E为DD中点,则BD1和平面ACE位置关系是 三、解答题10.如图,正三棱柱的底面边长是2,侧棱长是 EQ r(3),D是AC的中点.求证:平面.11.如图,在平行六面体ABCD-A1B1C1D1中,E,M,N,G分别是AA1,CD,CB,CC1的中点, 求证:(1)MN/B1D1 ;(2)AC1/平面EB1D1 ;(3)平面EB1D1/平面BDG. 参考答案一、选择题1D 【提示】当时,内有无数多条直线与交线平行,同时这些直线也与平面平行.故A,B,C均是错误的2C 【提示】棱AC,BD与平面EFG平行,共2条.3C【提示】则或异面;所
9、以A错误;则或异面或相交,所以B错误;则或异面,所以D错误;,则,这是公理4,所以C正确.4B 【提示】若直线m不平行于平面,且m,则直线m于平面相交,内不存在与m平行的直线.5B 【提示】错误.过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行.过直线外一点有无数个平面和这条直线平行平行于同一条直线的两条直线和同一平面平行或其中一条在平面上.6. D 【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边.二、填空题7平面ABC,平面ABD【提示】连接AM并延长,交CD于E,连结BN并延长交CD于F,由重心性质可知,E、F重合为一点,且该点为CD的中点E,由=得M
10、NAB.因此,MN平面ABC且MN平面ABD.8. 【提示】对于,面MNP/面AB,故AB/面MNP.对于,MP/AB,故AB/面MNP,对于,过AB找一个平面与平面MNP相交,AB与交线显然不平行,故不能推证AB/面MNP.9平行【提示】连接BD交AC于O,连OE,OEB D,OEC平面ACE,B D平面ACE.三、解答题10.证明:设与相交于点P,连接PD,则P为中点,D为AC中点,PD/.又PD平面D,/平面D 11.证明:(1) M、N分别是CD、CB的中点,MN/BD又BB1DD1,四边形BB1D1D是平行四边形. 所以BD/B1D1.又MN/BD,从而MN/B1D1 (2)(法1)连A1C1,A1C1交B1D1与O点四边形A1B1C1D1为平行四边形,则O点是A1C1的中点E是AA1的中点,EO是AA1C1的中位线,EO/AC1.AC1面EB1D1 ,EO面EB1D1,所以AC1/面EB1D1 (法2)作BB1中点为H点,连接AH、C1H,E、H点为AA1、BB1中点,所以EHC1D1,则四边形EHC1D1是平行四边形,所以ED1/HC1又因为EAB1H,则四边形EAHB1是平行四边形,所以EB1/AH
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年西宁驾驶员客运从业资格证模拟考试答案
- 2024年互联网金融服务平台运营合同规定业务范围与风险管理
- 2023届新高考化学选考一轮总复习训练-阶段过关检测(六) 化学实验
- 2024年湖南客运驾驶员考试题库及答案
- 2024年度机器人产业园区建设与运营合同
- 2024年土地使用权转让合同转让条件和要求
- 2024年度卫星通信技术研发合同
- 遮蔽与解蔽:智媒时代新闻生产与消费的变革
- 企业人力资源绩效管理体系的构建
- 集体生日活动方案
- 儿童早期的认知发展-皮亚杰前运算阶段(三座山实验)
- 国开一体化平台01588《西方行政学说》章节自测(1-23)试题及答案
- 2024年极兔速递有限公司招聘笔试参考题库附带答案详解
- 2024年威士忌酒相关公司行业营销方案
- 网络游戏危害课件
- 2024供电营业规则学习课件
- 铁路给水排水设计规范(TB 10010-2016)
- GINA2023-哮喘防治指南解读-课件
- 2024年上海市第二十七届初中物理竞赛初赛试题及答案
- 寝室设计方案方法与措施
- 收费站冬季安全注意事项
评论
0/150
提交评论