版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.4.2 圆的一般方程圆的标准方程: (x-a)2 +(y-b)2 =r2 (r0) 其中点(a,b)为圆心, r为半径特别地,当圆心在坐标原点时,圆的方程是 x2 +y2 =r2 复习回顾一、 复习引入圆的标准方程:可见:任何一个圆的方程都可以化成下面的形式 x2+y2+Dx+Ey+F=0 (1)二元二次方程(1)表示的曲线是否一定为一个圆?(x-a)2 +(y-b)2=r2 (r0)将标准方程展开可得: x2+y2-2ax-2by+a2+b2-r2=0 (1) x2+y22x+4y+4=0(2) x2+y22x+4y+5=0(3) x2+y22x+4y+6=0练:判断下列二元二次方程是否
2、表示一个圆的方程(x1)2+(y+2)2=1(x1)2+(y+2)2=0(x1)2+(y+2)2=1已知方程 x2 +y2+Dx+Ey+F=0故(1)当D2+E2-4F0时,该方程表示以点 为圆心, 为半径的圆(2)当D2+E2-4F=0时,该方程表示点 (3)当D2+E2-4F0时,方程x2+y2+Dx+Ey+F=0表示一个圆叫做圆的一般方程已知方程 x2 +y2+Dx+Ey+F=0配方,得二、 新课讲解注意:(1)圆的方程是二元二次方程,但二元二次方程不 一定能表示一个圆;(2)上述方程要表示圆,需满足 D2+E2-4F0;(3)圆的一般方程中,x2 和y2的系数都是1;例1.求过三点O(
3、0,0),A(1,1),B(4,2)的圆的方程,并求出这个圆的半径长和圆心的坐标.解:设所求圆的方程为 x2 +y2+Dx+Ey+F=0 则依题意可得F=0D+E+F+2=04D+2E+F+20=0解得 D=-8,E=6,F=0故所求圆的方程为 x2 +y2-8x+6y=0 三、 例题练习:123页1、2题所求的圆心坐标是(4,-3),半径长r=5 。 例2.已知线段AB的端点B的坐标为(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的中点的轨迹方程.解:设点M的坐标为(x,y),点A的坐标为(x0,y0)即x0=2x-4, y0=2y-3则依题意可得点A在圆(x+1)2+y2=
4、4上运动 (x0+1)2+y02=4故(2x-4+1)2+(2y-3)2=4整理,得故线段AB的中点的轨迹方程为三、 例题xyoB(4,3)AM(x,y)例2.已知线段AB的端点B的坐标为(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的中点的轨迹方程.三、 例题xyoB(4,3)AM(x,y)相关点法是指:当生成轨迹的动点M随着另一动点A的变动而有规律地变动,且A又落在一给定的曲线C上时,根据条件去寻找表示M、A两点间规律的表达式,然后将A点的两个坐标分别用M点的坐标来表示,再把A点的坐标代入曲线C的方程这一方法的本质问题是代入! 例3. 方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0 表示圆,(1)求m的取值范围;(2)求半径r的取值范围.解:(1)依题意可得 4 (m+3)2+4(1-4m2)2-4(16m4+9)0 整理,得 7m2-6m-10解得三、 例题解:(2)例3. 方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0 表示圆,(1)求m的取值范围;(2)求半径r的取值范围.三、 例题小结:用待定系数法求圆的方程步骤 1. 根据题意设所求圆的方程为标准式或一般式;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 勤工助学工作总结15篇
- 酒店实习报告模板锦集10篇
- 爱话题作文15篇
- 纹身操作手法课程设计
- 高中信息技术 键盘和键盘操作教案
- DB2301T 193-2024林粮间作技术规程
- 动脉导管未闭课件
- 借证协议书(2篇)
- 儿童故事版权使用合同(2篇)
- 妇幼保健计划生育服务中心传染病卫生应急预案
- DB63-T 1672-2018+沥青路面整治工程新旧路面联结层技术规范
- 基于CAN通讯的储能变流器并机方案及应用分析报告-培训课件
- 园艺疗法共课件
- 布氏、韦氏、洛氏硬度换算表
- 钢筋混凝土地下通道课程设计
- 韩流对中国文化的影响课件
- 检验检测服务公司市场营销计划
- 医务人员外出进修流程图
- DB32∕T 2349-2013 杨树一元立木材积表
- 昌乐二中271高效课堂培训与评价ppt课件
- 猪场名词及指标讲义
评论
0/150
提交评论