2022届高考数学一轮复习:直线的倾斜角与斜率直线的方程(Word版含解析)_第1页
2022届高考数学一轮复习:直线的倾斜角与斜率直线的方程(Word版含解析)_第2页
2022届高考数学一轮复习:直线的倾斜角与斜率直线的方程(Word版含解析)_第3页
2022届高考数学一轮复习:直线的倾斜角与斜率直线的方程(Word版含解析)_第4页
2022届高考数学一轮复习:直线的倾斜角与斜率直线的方程(Word版含解析)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PAGE 直线的倾斜角与斜率、直线的方程基础练一、选择题1直线l:xsin30ycos15010的斜率是()A.eq f(r(3),3)B.eq r(3)Ceq r(3)Deq f(r(3),3)22021秦皇岛模拟倾斜角为120,在x轴上的截距为1的直线方程是()A.eq r(3)xy10B.eq r(3)xyeq r(3)0C.eq r(3)xyeq r(3)0D.eq r(3)xyeq r(3)03若经过两点A(4,2y1),B(2,3)的直线的倾斜角为eq f(3,4),则y等于()A1B3C0D242021河南安阳模拟若平面内三点A(1,a),B(2,a2),C(3,a3)共线,则a

2、()A1eq r(2)或0B.eq f(2r(5),2)或0C.eq f(2r(5),2)D.eq f(2r(5),2)或052021湖南衡阳八中月考已知直线l的倾斜角为且过点(eq r(3),1),其中sineq blc(rc)(avs4alco1(f(,2)eq f(1,2),则直线l的方程为()A.eq r(3)xy20B.eq r(3)xy40Cxeq r(3)y0D.eq r(3)x3y6062021安徽四校联考直线l经过点(1,3)且与两坐标轴的正半轴围成的三角形面积为6,则直线l的方程是()A3xy60B3xy0Cx3y100Dx3y807一次函数yeq f(m,n)xeq f(

3、1,n)的图象同时经过第一、三、四象限的必要不充分条件是()Am1,且n1Bmn0,且n0Dm0,且n08直线AxBy10在y轴上的截距是1,而且它的倾斜角是直线eq r(3)xy3eq r(3)的倾斜角的2倍,则()AAeq r(3),B1BAeq r(3),B1CAeq r(3),B1DAeq r(3),B19直线2xcosy30eq blc(rc)(avs4alco1(blcrc(avs4alco1(f(,6),f(,3)的倾斜角的变化范围是()A.eq blcrc(avs4alco1(f(,6),f(,3)B.eq blcrc(avs4alco1(f(,4),f(,3)C.eq blc

4、rc(avs4alco1(f(,4),f(,2)D.eq blcrc(avs4alco1(f(,4),f(2,3)10经过点(0,1)且与直线2x3y40平行的直线方程为()A2x3y30B2x3y30C2x3y20D3x2y20二、填空题11若三点A(2,3),B(3,2),Ceq blc(rc)(avs4alco1(f(1,2),m)共线,则实数m_.12直线l过点P(1,0),且与以A(2,1),B(0,eq r(3)为端点的线段有公共点,则直线l斜率的取值范围为_132021贵州遵义四中月考过点(2,3)且在两坐标轴上的截距互为相反数的直线方程为_14一条直线经过点A(2,2),并且与

5、两坐标轴围成的三角形的面积为1,则此直线的方程为_能力练152021湖北孝感调研已知点A(2,3),B(3,2),直线l的方程为kxyk10,且与线段AB相交,则直线l的斜率k的取值范围为()Akeq f(3,4)或k4B.keq f(3,4)或keq f(1,4)C4keq f(3,4)D.eq f(3,4)k4162021山西大同重点中学模拟数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线,已知ABC的顶点A(4,0),B(0,2),且ACBC,则ABC的欧拉线方程为()Ax2y30B2x

6、y30Cx2y30D2xy30172021百所名校单元示范卷直线l经过A(2,1),B(1,m2),mR两点,那么直线l的倾斜角的取值范围为_参考答案:1解析:设直线l的斜率为k,则keq f(sin30,cos150)eq f(r(3),3).故选A.答案:A2解析:由于倾斜角为120,故斜率keq r(3).又直线过点(1,0),所以直线方程为yeq r(3)(x1),即eq r(3)xyeq r(3)0.故选D.答案:D3解析:由keq f(32y1,24)taneq f(3,4)1.得42y2,y3.故选B.答案:B4解析:平面内三点A(1,a),B(2,a2),C(3,a3)共线,k

7、ABkAC,即eq f(a2a,21)eq f(a3a,31),即a(a22a1)0,解得a0或a1eq r(2).故选A.答案:A5解析:sineq blc(rc)(avs4alco1(f(,2)eq f(1,2),coseq f(1,2),eq f(2,3),则taneq r(3),直线的方程为y1eq r(3)(xeq r(3),即eq r(3)xy40,故选B.答案:B6解析:解法一设直线l的斜率为k(k0,b0),则可得eq f(1,a)eq f(3,b)1且ab12,解得a2,b6,则直线l的方程为eq f(x,2)eq f(y,6)1,即3xy60,故选A.答案:A7解析:因为y

8、eq f(m,n)xeq f(1,n)的图象同时经过第一、三、四象限,故eq f(m,n)0,eq f(1,n)0,n0,但此为充要条件,因此,其必要不充分条件为mn0.故选B.答案:B8解析:将直线AxBy10化成斜截式yeq f(A,B)xeq f(1,B).eq f(1,B)1,B1,故排除A,D.又直线eq r(3)xy3eq r(3)的倾斜角eq f(,3),直线AxBy10的倾斜角为2eq f(2,3),斜率eq f(A,B)taneq f(2,3)eq r(3),Aeq r(3),故选B.答案:B9解析:直线2xcosy30的斜率k2cos.由于eq blcrc(avs4alco

9、1(f(,6),f(,3),所以eq f(1,2)coseq f(r(3),2),因此k2cos1,eq r(3)设直线的倾斜角为,则0,tan1,eq r(3)所以eq blcrc(avs4alco1(f(,4),f(,3),即倾斜角的变化范围是eq blcrc(avs4alco1(f(,4),f(,3).故选B.答案:B10解析:直线2x3y40的斜率为eq f(2,3),与直线2x3y40平行的直线的斜率也为eq f(2,3),经过点(0,1)且斜率为eq f(2,3)的直线,其斜截式方程为yeq f(2,3)x1,整理得2x3y30,故选A.答案:A11解析:由题意得kABeq f(2

10、3,32)1,kACeq f(m3,f(1,2)2).A,B,C三点共线,kABkAC,eq f(m3,f(1,2)2)1,解得meq f(9,2).答案:eq f(9,2)12解析:如图,因为kAPeq f(10,21)1,kBPeq f(r(3)0,01)eq r(3),所以k(,eq r(3)1,)答案:(,eq r(3)1,)13解析:当直线过原点时,直线斜率为eq f(30,20)eq f(3,2),故直线方程为yeq f(3,2)x,即3x2y0.当直线不过原点时,设直线方程为eq f(x,a)eq f(y,a)1,把(2,3)代入可得a1,故直线的方程为xy10.综上,所求直线方

11、程为3x2y0或xy10.答案:3x2y0或xy1014解析:设所求直线的方程为eq f(x,a)eq f(y,b)1,A(2,2)在直线上,eq f(2,a)eq f(2,b)1又因为直线与坐标轴围成的面积为1,eq f(1,2)|a|b|1由得(1)eq blcrc (avs4alco1(ab1,ab2)或(2)eq blcrc (avs4alco1(ab1,ab2)由(1)得eq blcrc (avs4alco1(a2,b1)或eq blcrc (avs4alco1(a1,b2),方程组(2)无解,故所求的直线方程为eq f(x,2)eq f(y,1)1或eq f(x,1)eq f(y,

12、2)1,即x2y20或2xy20.答案:x2y20或2xy2015解析:直线l的方程kxyk10可化为k(1x)y10,直线l过定点P(1,1),且与线段AB相交,如图所示直线PA的斜率kPAeq f(31,21)4,直线PB的斜率kPBeq f(21,31)eq f(3,4),则k4或keq f(3,4).故选A.答案:A16解析:线段AB的中点为M(2,1),kABeq f(1,2),线段AB的垂直平分线方程为y12(x2),即2xy30,ACBC,ABC的外心,重心,垂心都位于线段AB的垂直平分线上,ABC的欧拉线方程为2xy30,故选D.答案:D17解析:直线l的斜率存在且kleq f(m21,12)1m21,又直线l的倾斜角为,则有tan1,即tan0或0tan1,根据正切函数在eq blcrc)(av

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论