




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,一圆弧过方格的格点A、B、
2、C,在方格中建立平面直角坐标系,使点A的坐标为(3,2),则该圆弧所在圆心坐标是()A(0,0)B(2,1)C(2,1)D(0,1)2如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )ABCD3若关于x的一元二次方程(k1)x2+2x2=0有两个不相等的实数根,则k的取值范围是()AkBkCk且k1Dk且k14在一张考卷上,小华写下如下结论,记正确的个数是m,错误的个数是n,你认为有公共顶点且相等的两个角是对顶角 若,则它们互余A4BCD5在RtABC中,C=90,如果AC=2,cosA=,那么AB的长是()A3BC
3、D6若关于x的方程=3的解为正数,则m的取值范围是( )AmBm且mCmDm且m7- 的绝对值是( )A-4BC4D0.48抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A中位数 B众数 C平均数 D方差9如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )ABCD10已知:如图,在平面直角坐标系xOy中,等边AOB的边长为6,点C在边OA上,点D在边AB上,且OC3BD,反比例函数y(k0)的图象恰好经过点C和点D,则k的值为()ABCD二、填空题(共7小题,每
4、小题3分,满分21分)11计算:=_.12如图,在ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cosC=,那么GE=_13如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是_cm14如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点若四边形EFGH为菱形,则对角线AC、BD应满足条件_15在ABC中,AB=13cm,AC=10cm,BC边上的高为11cm,则ABC的面积为_cm116分解因式:2x34x2+2x_17如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=的图象没有公共点,那么k的取值
5、范围是_三、解答题(共7小题,满分69分)18(10分)如图,在ABC中,ACB90,ABC10,CDE是等边三角形,点D在边AB上如图1,当点E在边BC上时,求证DEEB;如图2,当点E在ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在ABC外部时,EHAB于点H,过点E作GEAB,交线段AC的延长线于点G,AG5CG,BH1求CG的长19(5分)如图1,抛物线l1:y=x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5)(1)求抛物线l2的函数表达式;(2)P为直
6、线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值20(8分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、(1)求反比例函数和一次函数的解析式;(2)请连结,并求出的面积;(3)直接写出当时,的解集21(10分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m0)的图象交于点A(3,1),且过点B(0,2)(1)求反比例函数和一次函数的表
7、达式;(2)如果点P是x轴上一点,且ABP的面积是3,求点P的坐标22(10分)如图,在ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CFBC,求证:四边形OCFE是平行四边形23(12分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A会;B不会;C有时会),绘制了两幅不完整的统计图(如图)(1)这次被抽查的学生共有_人,扇形统计图中,“A组”所对应的圆心度数为_;(2)补全两个统计图;(3)如果该校学生共有2000人,请估计“每天都
8、会节约粮食”的学生人数;(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:200020%0.5365=73000(元),你认为这种说法正确吗?并说明理由24(14分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:设(其中均为整数),则有这样小明就找到了一种把部分的式子化为平方式的方法请你仿照小明的方法探索并解决下列问题:当均为正整数时,若,用含m、n的式子分别表示,得 , ;(2)利用所探索的结论,找一组正整数,填空: ( )2;(3)若,且均为正整数,求的值参考答案一、
9、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心点A的坐标为(3,2),点O的坐标为(2,1)故选C2、C【解析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:故选:C【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键3、C【解析】根据题意得k-10且=2-4(
10、k-1)(-2)0,解得:k且k1故选C【点睛】本题考查了一元二次方程ax+bx+c=0(a0)的根的判别式=b-4ac,关键是熟练掌握:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根4、D【解析】首先判断出四个结论的错误个数和正确个数,进而可得m、n的值,再计算出即可【详解】解:有公共顶点且相等的两个角是对顶角,错误;,正确;,错误;若,则它们互余,错误;则,故选D【点睛】此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m、n的值5、A【解析】根据锐角三角函数的性质,可知cosA=,然后根据AC=2,解方程可求得AB=
11、3.故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数值即可求解.6、B【解析】解:去分母得:x+m3m=3x9,整理得:2x=2m+9,解得:x=,已知关于x的方程=3的解为正数,所以2m+90,解得m,当x=3时,x=3,解得:m=,所以m的取值范围是:m且m故答案选B7、B【解析】直接用绝对值的意义求解.【详解】的绝对值是故选B【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键8、A【解析】7人成绩的中位数是第4名的成绩参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】由于总共有7个人,且他
12、们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.9、A【解析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.10、A【解析】试题分析:过点C作CEx轴于点E,过点D作DFx轴于点F,如图所示设BD=a,则OC=3aAOB为边长为1的等边三角形,COE=DBF=10,OB=1在RtCOE中,COE=10,CEO=90,
13、OC=3a,OCE=30,OE=a,CE= = a,点C(a, a)同理,可求出点D的坐标为(1a,a)反比例函数(k0)的图象恰好经过点C和点D,k=aa=(1a)a,a=,k=故选A二、填空题(共7小题,每小题3分,满分21分)11、2【解析】利用平方差公式求解,即可求得答案【详解】=()2-()2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算此题难度不大,注意掌握平方差公式的应用12、【解析】过点E作EFBC交BC于点F,分别求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再结合BGDBEF即可.【详解】过点E作EFBC交BC于点F.AB=AC, AD为BC的中
14、线 ADBC EF为ADC的中位线.又cosC=,AB=AC=5,AD=3,BD=CD=4,EF=,DF=2BF=6在RtBEF中BE=,又BGDBEF,即BG=.GE=BE-BG=故答案为.【点睛】本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似.13、 【解析】连接OA,作OMAB于点M,正六边形ABCDEF的外接圆半径为2cm正六边形的半径为2 cm, 即OA2cm在正六边形ABCDEF中,AOM=30,正六边形的边心距是OM= cos30OA=(cm)故答案为.14、AC=BD【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定
15、理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形试题解析:添加的条件应为:AC=BD证明:E,F,G,H分别是边AB、BC、CD、DA的中点,在ADC中,HG为ADC的中位线,所以HGAC且HG=AC;同理EFAC且EF=AC,同理可得EH=BD,则HGEF且HG=EF,四边形EFGH为平行四边形,又AC=BD,所以EF=EH,四边形EFGH为菱形考点:1菱形的性质;2三角形中位线定理15、
16、2或2【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2故答案为2或2考点:勾股定理16、2x(x-1)2【解析】2x34x2+2x= 17、【解析】先根据正比例函数y=(k-1)x的函数值y随x的增大而减小,可知k-10;再根据它的图象与反比例函数y=的图象没有公共点,说明反比例函数y=的图象经过一、三象限,k0,从而可以求出k的取值范围【详解】y=(k-1)x的函数值y随x的增大而减小,k-10k1而y=(k-1)x的图象与反比例函数y=的图象没有公共点
17、,k0综合以上可知:0k1故答案为0k1【点睛】本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2【解析】(1)、根据等边三角形的性质得出CED=60,从而得出EDB=10,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据ACO和CDE为等边三角形,从而得出ACD和OCE全等,然后得出COE和BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出COE和BOE全等,然后得出CEG和DCO全等,设CG=a,则AG=5
18、a,OD=a,根据题意列出一元一次方程求出a的值得出答案【详解】(1)CDE是等边三角形, CED=60, EDB=60B=10,EDB=B, DE=EB;(2) ED=EB, 理由如下:取AB的中点O,连接CO、EO,ACB=90,ABC=10, A=60,OC=OA, ACO为等边三角形, CA=CO,CDE是等边三角形, ACD=OCE,ACDOCE, COE=A=60,BOE=60, COEBOE, EC=EB, ED=EB;(1)、取AB的中点O,连接CO、EO、EB, 由(2)得ACDOCE,COE=A=60,BOE=60,COEBOE,EC=EB,ED=EB, EHAB,DH=B
19、H=1,GEAB, G=180A=120, CEGDCO, CG=OD,设CG=a,则AG=5a,OD=a,AC=OC=4a,OC=OB, 4a=a+1+1, 解得,a=2,即CG=219、(1)抛物线l2的函数表达式;y=x24x1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【解析】(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CHPG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3y |,PG
20、=|y |,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为1,4,当1x4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;当4x1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)抛物线l1:y=x2+bx+3对称轴为x=1,x=1,b=2,抛物线l1的函数表达式为:y=x2+2x+3,当y=0时,x2+2x+3=0,解得:x1=3,x2=1,A(1,0),B(3,0),设
21、抛物线l2的函数表达式;y=a(x1)(x+1),把D(0,1)代入得:1a=1,a=1,抛物线l2的函数表达式;y=x24x1;(2)作CHPG交直线PG于点H,设P点坐标为(1,y),由(1)可得C点坐标为(0,3),CH=1,PH=|3y |,PG=|y |,AG=2,PC2=12+(3y)2=y26y+10,PA2= =y2+4,PC=PA,PA2=PC2,y26y+10=y2+4,解得y=1,P点坐标为(1,1);(3)由题意可设M(x,x24x1),MNy轴,N(x,x2+2x+3),令x2+2x+3=x24x1,可解得x=1或x=4,当1x4时,MN=(x2+2x+3)(x24x
22、1)=2x2+6x+8=2(x)2+,显然14,当x=时,MN有最大值12.1;当4x1时,MN=(x24x1)(x2+2x+3)=2x26x8=2(x)2,显然当x时,MN随x的增大而增大,当x=1时,MN有最大值,MN=2(1)2=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【点睛】本题是二次函数与几何综合题, 主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.20、(1),;(2)4;(3)【解析】(1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;
23、(2)依据OB=2,点A的横坐标为-4,即可得到AOB的面积为:24=4;(3)依据数形结合思想,可得当x1时,k1x+b1的解集为:-4x1【详解】解:(1)如图,连接,C与轴,轴相切于点D,且半径为,四边形是正方形,点,把点代入反比例函数中,解得:,反比例函数解析式为:,点在反比例函数上,把代入中,可得,把点和分别代入一次函数中,得出:,解得:,一次函数的表达式为:;(2)如图,连接,点的横坐标为,的面积为:;(3)由,根据图象可知:当时,的解集为:【点睛】本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标21、(1)y=;y=x-2;(2)(0,
24、0)或(4,0)【解析】试题分析:(1)利用待定系数法即可求得函数的解析式; (2)首先求得AB与x轴的交点,设交点是C,然后根据SABP=SACP+SBCP即可列方程求得P的横坐标试题解析:(1)反比例函数y=(m0)的图象过点A(1,1), 1= m=1 反比例函数的表达式为y= 一次函数y=kx+b的图象过点A(1,1)和B(0,-2) , 解得:, 一次函数的表达式为y=x-2; (2)令y=0,x-2=0,x=2, 一次函数y=x-2的图象与x轴的交点C的坐标为(2,0) SABP=1, PC1+PC2=1 PC=2, 点P的坐标为(0,0)、(4,0)【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据SABP=SACP+SBCP列方程是关键22、证明见解析.【解析】利用三角形中位线定理判定OEBC,且OE=BC结合已知条件CF=BC,则OE/CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论【详解】四边形ABCD是平行四边形,点O是BD的中点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兰州财经大学《土木工程制图》2023-2024学年第二学期期末试卷
- 兰州理工大学《工程测量B理论》2023-2024学年第二学期期末试卷
- 绍兴文理学院《项目导向专业课程量子信息方向》2023-2024学年第二学期期末试卷
- 厦门演艺职业学院《古生物学与地史学》2023-2024学年第二学期期末试卷
- 武汉工程大学《数学建模综合实践》2023-2024学年第二学期期末试卷
- 辽宁石油化工大学《曲式与作品分析Ⅱ》2023-2024学年第一学期期末试卷
- 家政公司服务保姆合同
- 住宅小区手房买卖合同
- 劳务外包技术服务合同
- 房产抵押经营贷款合同
- 儿童太阳系知识科普课件
- 2024-2025学年七年级下册历史 第10课《金与南宋的对峙》教学设计
- MRI基础知识教学课件
- 染发全部知识培训课件
- 2022-2027年中国无锡市养老地产行业发展监测及发展战略规划报告
- 三年级下册美术教案
- 档案管理实务基础试题及答案
- 2025空压机节能升级合同能源管理(EMC)项目合同
- 上海杨浦区社区工作者考试真题2024
- 2024年全国中学生生物学联赛试题含答案
- GLB-2防孤岛保护装置试验报告
评论
0/150
提交评论