2022年山东省滨州市北城英才校中考三模数学试题含解析_第1页
2022年山东省滨州市北城英才校中考三模数学试题含解析_第2页
2022年山东省滨州市北城英才校中考三模数学试题含解析_第3页
2022年山东省滨州市北城英才校中考三模数学试题含解析_第4页
2022年山东省滨州市北城英才校中考三模数学试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1 “辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为A675102B67.5102C6.75104D6.751052如图,点P是菱形ABCD的对角线AC上的一个动点,过

2、点P垂直于AC的直线交菱形ABCD的边于M、N两点设AC2,BD1,APx,AMN的面积为y,则y关于x的函数图象大致形状是( )ABCD3已知二次函数的图象如图所示,则下列说法正确的是( )A0B0C0D04如图,BD为O的直径,点A为弧BDC的中点,ABD35,则DBC()A20B35C15D455方程x23x0的根是( )Ax0Bx3C,D,6下列说法正确的是()A3是相反数B3与3互为相反数C3与互为相反数D3与互为相反数7下列各组单项式中,不是同类项的一组是( )A和B和C和D和38在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围

3、为( )ABCD9已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )A4b+2cB0C2cD2a+2c10一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )快车追上慢车需6小时;慢车比快车早出发2小时;快车速度为46km/h;慢车速度为46km/h; A、B两地相距828km;快车从A地出发到B地用了14小时A2个B3个C4个D5个二、填空题(本大题共6个小题,每小题3分,共18分)11我们知道:1+3=4,1+3+5=9,1+3+5+7=16,观察下面的一列数:-1,2,,-3, 4,-5,6,

4、将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 12如图,在ABC中,点D是AB边上的一点,若ACDB,AD1,AC2,ADC的面积为1,则BCD的面积为_13已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_14图,A,B是反比例函数y=图象上的两点,过点A作ACy轴,垂足为C,AC交OB于点D若D为OB的中点,AOD的面积为3,则k的值为_15如图,在RtABC中,ACB=90,AC=4,BC=3,点D为AB的中点,将ACD绕着点C逆时针旋转,使点A落在CB的延长线A处,点D落在点D处,则DB长为_163的倒数是_三、解答题(共8题,共72分)17(8分

5、)如图,O是ABC的外接圆,FH是O的切线,切点为F,FHBC,连结AF交BC于E,ABC的平分线BD交AF于D,连结BF(1)证明:AF平分BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长18(8分)如图甲,直线y=x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0 x3时,在抛物线上求一点E,使CBE的面积有最大值(图乙、丙供画图

6、探究)19(8分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60沿坡面AB向上走到B处测得广告牌顶部C的仰角为45,已知山坡AB的倾斜角BAH30,AB20米,AB30米(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度20(8分)问题探究(1)如图1,ABC和DEC均为等腰直角三角形,且BAC=CDE=90,AB=AC=3,DE=CD=1,连接AD、BE,求的值;(2)如图2,在RtABC中,ACB=90,B=30,BC=4,过点A作AMAB,点P是射线AM上一动点,连接CP,做CQCP交线段AB于点Q,连接PQ,求PQ的最小值;(3)李师傅

7、准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,BAD=135,ADC=90,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值图321(8分)如图,已知:AD 和 BC 相交于点 O,A=C,AO=2,BO=4,OC=3,求 OD 的长22(10分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点(1)求抛物线的解析式,并直接写出点D的坐标;(2)当AMN的周长最小时,求t的值;(3)如图,过点M作MEx轴,交抛物线y=a

8、x2+bx于点E,连接EM,AE,当AME与DOC相似时请直接写出所有符合条件的点M坐标23(12分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表: 组别身高Ax160B160 x165C165x170D170 x175Ex175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在 组,中位数在 组;(2)样本中,女生身高在E组的有 人,E组所在扇形的圆心角度数为 ;(3)已知该校共有男生600人,女生480人,请估让身高在165x175之间的学生约有多少人?24在传箴言活动中,某班团支部对该班全体团

9、员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所发箴言的平均条数是_;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该

10、数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0).【详解】67500一共5位,从而67500=6.75104,故选C.2、C【解析】AMN的面积=APMN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0 x1;(2)1x2;解:(1)当0 x1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且ACBD;MNAC,MNBD;AMNABD,=,即,=,MN=x;y=APMN=x2(0 x1),0,函数图象开口向上;(2)当1x2,如图,同理证得,CDBCNM,=,即=,MN=2

11、-x;y=APMN=x(2-x),y=-x2+x;-0,函数图象开口向下;综上答案C的图象大致符合故选C本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想3、B【解析】根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y0,确定a+b+c的符号【详解】解:抛物线开口向上,a0,抛物线交于y轴的正半轴,c0,ac0,A错误;-0,a0,b0,B正确;抛物线与x轴有两个交点,b2-4ac0,C错误;当x=1时,y0,a+b+c0,D错误;故选B【点睛】本题考查的是二次函数图象与系数

12、的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定4、A【解析】根据ABD35就可以求出的度数,再根据,可以求出 ,因此就可以求得的度数,从而求得DBC【详解】解:ABD35,的度数都是70,BD为直径,的度数是18070110,点A为弧BDC的中点,的度数也是110,的度数是110+11018040,DBC20,故选:A【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力5、D【解析】先将方程左边提公因式x,解方程即可得答案【详解】x23x0,x(x3)0,x10,x23,故选:D【点睛】本题考查解一元二次方程,

13、解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键6、B【解析】符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确【详解】A、3和-3互为相反数,错误;B、3与-3互为相反数,正确;C、3与互为倒数,错误;D、3与-互为负倒数,错误;故选B【点睛】此题考查相反数问题,正确理解相反数的定义是解答此题的关键7、A【解析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟

14、练的掌握单项式与多项式的相关知识点.8、D【解析】先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可【详解】解:点M的坐标是(4,3),点M到x轴的距离是3,到y轴的距离是4,点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,r的取值范围是3r4,故选:D【点睛】本题考查点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键9、A【解析】由数轴上点的位置得:ba0|c|a|,a+c0,a2b0,c+2b0,则原式=a+ca+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌

15、握运算法则是解本题的关键.10、B【解析】根据图形给出的信息求出两车的出发时间,速度等即可解答【详解】解:两车在276km处相遇,此时快车行驶了4个小时,故错误慢车0时出发,快车2时出发,故正确快车4个小时走了276km,可求出速度为69km/h,错误慢车6个小时走了276km,可求出速度为46km/h,正确慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确快车2时出发,14时到达,用了12小时,错误故答案选B【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】先求出19行有多少个数,再

16、加3就等于第20行第三个数是多少然后根据奇偶性来决定负正【详解】1行1个数,2行3个数,3行5个数,4行7个数,19行应有219-1=37个数到第19行一共有1+3+5+7+9+37=1919=1第20行第3个数的绝对值是1+3=2又2是偶数,故第20行第3个数是212、1【解析】由ACD=B结合公共角A=A,即可证出ACDABC,根据相似三角形的性质可得出()2,结合ADC的面积为1,即可求出BCD的面积【详解】ACDB,DACCAB,ACDABC,()2()2,SABC4SACD4,SBCDSABCSACD411故答案为1【点睛】本题考查相似三角形的判定与性质,解题的关键是掌握相似三角形的

17、判定与性质.13、2【解析】分析:根据三角形的三边关系“任意两边之和第三边,任意两边之差第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解详解:根据三角形的三边关系,得第三边4,而1又第三条边长为整数,则第三边是2点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件14、1【解析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据AOD的面积为3,列出关系式求得k的值解:设点D坐标为(a,b),点D为OB的中点,点B的坐标为(2a,2b),k=4ab,又ACy轴,A在反比例函数图象上,A的坐标为(4a,b),AD=4aa=3a,AOD的面

18、积为3,3ab=3,ab=2,k=4ab=42=1故答案为1“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据AOD的面积为1列出关系式是解题的关键15、【解析】试题分析:解:在RtABC中,ACB=90,AC=4,BC=3,AB=5,点D为AB的中点,CD=AD=BD=AB=2.5,过D作DEBC,将ACD绕着点C逆时针旋转,使点A落在CB的延长线A处,点D落在点D处,CD=AD=AD,DE=1.5,AE=CE=2,BC=3,BE=1,BD=,故答案为考点:旋转的性质16、【解析】乘积为1的两数互为相反数,即a的倒数即为,符号一致【详解】3的倒数是

19、答案是三、解答题(共8题,共72分)17、【小题1】 见解析 【小题2】 见解析 【小题3】 【解析】证明:(1)连接OFFH切O于点FOFFH 1分BC | | FHOFBC 2分BF=CF 3分BAF=CAF 即AF平分BAC4分(2) CAF=CBF又CAF=BAFCBF=BAF 6分BD平分ABCABD=CBDBAF+ABD=CBF+CBD即FBD=FDB 7分BF=DF 8分(3) BFE=AFB FBE=FABBEFABF 9分即BF2=EFAF 10分EF=4 DE=3 BF=DF =4+3=7 AF=AD+7即4(AD+7)=49 解得AD=18、(1)y=x24x+3;(2)

20、(2,)或(2,7)或(2,1+2)或(2,12);(3)E点坐标为(,)时,CBE的面积最大【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EFx轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标试题解析:(1)直线y=x+3与x轴、y轴分别交于点B、

21、点C,B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,抛物线解析式为y=x24x+3;(2)y=x24x+3=(x2)21,抛物线对称轴为x=2,P(2,1),设M(2,t),且C(0,3),MC=,MP=|t+1|,PC=,CPM为等腰三角形,有MC=MP、MC=PC和MP=PC三种情况,当MC=MP时,则有=|t+1|,解得t=,此时M(2,);当MC=PC时,则有=2,解得t=1(与P点重合,舍去)或t=7,此时M(2,7);当MP=PC时,则有|t+1|=2,解得t=1+2或t=12,此时M(2,1+2)或(2,12);综上可知存在满足条件的点M,其坐标为(2,)或

22、(2,7)或(2,1+2)或(2,12);(3)如图,过E作EFx轴,交BC于点F,交x轴于点D,设E(x,x24x+3),则F(x,x+3),0 x3,EF=x+3(x24x+3)=x2+3x,SCBE=SEFC+SEFB=EFOD+EFBD=EFOB=3(x2+3x)=(x)2+,当x=时,CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,CBE的面积最大考点:二次函数综合题19、 (1) BH为10米;(2) 宣传牌CD高约(4020)米【解析】(1)过B作DE的垂线,设垂足为G分别在RtABH中,通过解直角三角形求出BH、AH;(2)在ADE解直角三角形求出DE的长,进而

23、可求出EH即BG的长,在RtCBG中,CBG=45,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度【详解】(1)过B作BHAE于H,RtABH中,BAH30,BHAB2010(米),即点B距水平面AE的高度BH为10米;(2)过B作BGDE于G,BHHE,GEHE,BGDE,四边形BHEG是矩形由(1)得:BH10,AH10,BGAH+AE(10+30)米,RtBGC中,CBG45,CGBG(10+30)米,CECG+GECG+BH10+30+1010+40(米),在RtAED中,tanDAEtan60,DEAE30CDCEDE10+40304020答:宣传

24、牌CD高约(4020)米【点睛】本题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,解题的关键是掌握解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题的基本方法.20、(1);(2);(3)+.【解析】(1)由等腰直角三角形的性质可得BC=3,CE=,ACB=DCE=45,可证ACDBCE,可得;(2)由题意可证点A,点Q,点C,点P四点共圆,可得QAC=QPC,可证ABCPQC,可得,可得当QCAB时,PQ的值最小,即可求PQ的最小值;(3)作DCE=ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,由题意可证ABCDEC,可得,且B

25、CE=ACD,可证BCEACD,可得BEC=ADC=90,由勾股定理可求CE,DF,BF的长,由三角形三边关系可求BD的最大值【详解】(1)BAC=CDE=90,AB=AC=3,DE=CD=1,BC=3,CE=,ACB=DCE=45,BCE=ACD,BCE=ACD,ACDBCE,;(2)ACB=90,B=30,BC=4,AC=,AB=2AC=,QAP=QCP=90,点A,点Q,点C,点P四点共圆,QAC=QPC,且ACB=QCP=90,ABCPQC,PQ=QC=QC,当QC的长度最小时,PQ的长度最小,即当QCAB时,PQ的值最小,此时QC=2,PQ的最小值为;(3)如图,作DCE=ACB,交

26、射线DA于点E,取CE中点F,连接AC,BE,DF,BF,ADC=90,AD=CD,CAD=45,BAC=BAD-CAD=90,ABCDEC,DCE=ACB,BCE=ACD,BCEACD,BEC=ADC=90,CE=BC=2,点F是EC中点,DF=EF=CE=,BF=,BDDF+BF=+【点睛】本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键21、OD=6.【解析】(1)根据有两个角相等的三角形相似,直接列出比例式,求出OD的长,即可解决问题【详解】在AOB与COD中,AOBCOD,OD=6.【点睛】该题主要考查了相

27、似三角形的判定及其性质的应用问题;解题的关键是准确找出图形中的对应元素,正确列出比例式;对分析问题解决问题的能力提出了一定的要求22、(1)y=x2x,点D的坐标为(2,);(2)t=2;(3)M点的坐标为(2,0)或(6,0)【解析】(1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;(2)连接AC,如图,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明AOC和ACB都是等边三角形,接着证明OCMACN得到CM=CN,OCM=ACN,则判断CMN为等边三角形得到MN=CM,于是AMN的周长=OA+CM,由于CMOA时,CM的值最小,AMN的周长最小,从而得

28、到t的值;(3)先利用勾股定理的逆定理证明OCD为直角三角形,COD=90,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,AMECOD,即|t-4|:4=|t2-t |:,当时,AMEDOC,即|t-4|:=|t2-t |:4,然后分别解绝对值方程可得到对应的M点的坐标【详解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,抛物线解析式为y=x2-x;y=x2-x =-2) 2-;点D的坐标为(2,-);(2)连接AC,如图,AB=4,而OA=4,平行四边形OCBA为菱形,OC=BC=4,C(2,2),AC=4,OC=OA=AC=AB=BC,AOC和

29、ACB都是等边三角形,AOC=COB=OCA=60,而OC=AC,OM=AN,OCMACN,CM=CN,OCM=ACN,OCM+ACM=60,ACN+ACM=60,CMN为等边三角形,MN=CM,AMN的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,当CMOA时,CM的值最小,AMN的周长最小,此时OM=2,t=2;(3)C(2,2),D(2,-),CD=,OD=,OC=4,OD2+OC2=CD2,OCD为直角三角形,COD=90,设M(t,0),则E(t,t2-t),AME=COD,当时,AMECOD,即|t-4|:4=|t2-t |:,整理得|t2-t|=|t-4|,解方

30、程t2-t =(t-4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-2(舍去);当时,AMEDOC,即|t-4|:=|t2-t |:4,整理得|t2-t |=|t-4|,解方程t2-t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-6(舍去);综上所述,M点的坐标为(2,0)或(6,0)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题23、(1)B,C;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论