徐胜利课题组研究方向简要介绍_第1页
徐胜利课题组研究方向简要介绍_第2页
徐胜利课题组研究方向简要介绍_第3页
徐胜利课题组研究方向简要介绍_第4页
徐胜利课题组研究方向简要介绍_第5页
已阅读5页,还剩166页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、徐胜利课题组研究方向徐胜利课题组研究方向简简 要要 介介 绍绍内内 容容 提提 要要(1)实验室组成(2)主要研究方向(3)现有条件(4)与超燃相关研究(5)特色和优势一、实验室组成一、实验室组成1 1 廊坊部分(清华科技园)廊坊部分(清华科技园)(1 1)超高速气体动力学超高速气体动力学(2 2)超声速燃烧超声速燃烧(3 3)燃烧燃烧/ /流场激光和光谱诊断流场激光和光谱诊断(4 4)高速高速水动力学水动力学一、实验室组成一、实验室组成2 2 燕郊部分(华北科技学院,安监局科技创新燕郊部分(华北科技学院,安监局科技创新创新平台,安监局创新平台,安监局/ /河北省重点实验室)河北省重点实验室)

2、(1 1)气体和多相爆炸与爆轰)气体和多相爆炸与爆轰(2 2)工业爆炸灾害)工业爆炸灾害二、主要研究方向二、主要研究方向(1 1)高速化学反应流和多相流)高速化学反应流和多相流 超燃、爆燃与爆轰、再入热化学非平衡超燃、爆燃与爆轰、再入热化学非平衡流流(2 2)和冲击相关的流体界面和流固耦合)和冲击相关的流体界面和流固耦合 水下爆炸、和爆炸容器水下爆炸、和爆炸容器(3 3)燃烧)燃烧/ /流场激光和光谱诊断流场激光和光谱诊断(4 4)高速水动力学)高速水动力学 物体高速入水(徐)和水下机动航行(彭)物体高速入水(徐)和水下机动航行(彭)三、现有条件三、现有条件1 1 实验设备实验设备(1 1)重

3、活塞驱动激波风洞重活塞驱动激波风洞/ /膨胀管风洞膨胀管风洞(2 2)长实验时间对撞重活塞压缩风洞)长实验时间对撞重活塞压缩风洞(3 3)重活塞压缩高压)重活塞压缩高压/ /超临界燃烧实验装置超临界燃烧实验装置(4 4)卧式一级轻气炮)卧式一级轻气炮(5 5)卧式一级)卧式一级/ /二级轻气炮二级轻气炮(4 4)立式可调发射角二级轻气炮)立式可调发射角二级轻气炮(5 5)激波管(矩形截面,圆截面)激波管(矩形截面,圆截面)(6 6)45m45m爆轰管爆轰管3.1 3.1 实验设备实验设备 图图4949膨胀管风洞照片膨胀管风洞照片 图图50 50 双活塞对象压缩风洞照片双活塞对象压缩风洞照片 图

4、图51 Ludwieg51 Ludwieg管风洞照片管风洞照片 图图52 52 超临界超临界/ /高压自点火燃烧实验装置高压自点火燃烧实验装置 图图53 Ludwieg53 Ludwieg管风洞照片管风洞照片图图2 2 卧式一级轻气炮(发射水中航行高速射弹)卧式一级轻气炮(发射水中航行高速射弹)图1 二级卧式轻气炮(发射高速弹丸)图图2 2 立式可调发射角二级轻气炮(发射高速射弹入水)立式可调发射角二级轻气炮(发射高速射弹入水)图图7 7 连发弹发射和出水实验装置示意图连发弹发射和出水实验装置示意图1 1激光器激光器 2 2发射管发射管 3 3 弹丸弹丸4 4测速系统测速系统 5 5立式水槽立

5、式水槽 6 6水水7 7反射镜反射镜 8 8框架框架 9 9消波网消波网1010顶盖顶盖 1111弹丸回收器弹丸回收器12CCD12CCD相机相机 1313弹丸弹丸14 1614 16吸能块吸能块 15 15 水水(a a)正视图)正视图(b b)截面图)截面图图图8 8 立式水槽设计图(正视图)立式水槽设计图(正视图)2 2 自编写计算程序自编写计算程序 SPH3D SPH3D FEM3D FEM3D LS3D LS3D,VOF3DVOF3D,MAC3DMAC3D FLUID3D FLUID3D3 3 测量系统测量系统 激波压力测量激波压力测量2020套套 Rapid Frame Rapid

6、 Frame超高速相机超高速相机PLIFPLIF(平面激光诱导荧光)(平面激光诱导荧光)PMIEPMIE(平面激光(平面激光MieMie散射)散射)PIVPIV(示踪粒子测速法)(示踪粒子测速法)XXRapidFrame 超高速超高速相机相机ParameterXXRapidFrame based on 4 Picos technologyXXRapidFrame basedon 4 Quik E technologyShortest gating time0.2ns1.2nsShortest interframing time0.01ns0.1nsTiming control step siz

7、e(gating and delay time)0.01ns0.1nsJitter 0.01ns 0.02nsDouble frame interframing time(two frames one channel)500ns500nsIndividual ICCD camera parametersee 4 Picossee 4 Quik ETrigger propagation delay(TTL signal)internal gate pulse: 67-72nsTrigger inputTTL, high voltage (100V) or optical fiber connec

8、torSpectral sensitivity of mirror based image splitterstandard: 380 - 1300nm (limited by splitting optics) optional: 200 - 1300nm (UV-enhanced splitting optic)(system sensitivity depends additionally on used photocathode)Photocathodestandard: S20 (UV), S25 (IR)CCD sensor resolutionStandard Resolutio

9、n SR: 782 x 582 pixelHigh Resolution HR: 1360 x 1024 pixelPixel sizeStandard Resolution SR:8.3 x 8.3mHigh Resolution HR:4.7 x 4.7mDynamic rangestandard: 12bit, optional: 14bitCamera interfaceUSB 2.0Dimensions (without handholds)3 channels: 625 x 325 x 325mm2, 4, 6 or 8 channels: 625 x 325 x 375mmWei

10、ght2, 3, 4, 6, 8 channels: 25kg, 32kg, 35kg, 39kg, 42kgPower Supply12V 5%图1 实验室布置图23(a)15m爆轰管 (b)40m爆轰管(c)时间同步控制系统 (d)泄爆罐24(g)20通道火焰测速仪 (h)高速激光纹影(i)分叉爆轰管观察窗 (j)爆轰管配气控制柜25(g)20通道火焰测速仪 (h)高速激光纹影(i)分叉爆轰管观察窗 (j)爆轰管配气控制柜2 2 测量条件测量条件(1)NIR-H2O-TDLAS,MIR-CO2-TDLAS, OH-/CH-/NO-PLIF(2)20路瞬态压力(3)超高速纹影/阴影:Rapi

11、d Frame速相机(4)PMIE(平面激光Mie散射)(5)瞬态光谱3 3 计算条件计算条件(1)并行机群 512核(2)自编计算程序 可压缩两相燃烧、流固耦合、流体界面和热化学非平衡流等计算、三维非定常热传导、结构动力学响应 SCRAM3DSCRAM3D,SPH3DSPH3D,FEM3DFEM3D,level-set3Dlevel-set3D,re-entry3Dre-entry3D,FLUID3DFLUID3D,MAC3DMAC3D2.3 高时间精度延时器(高时间精度延时器(DG535) 高速高速CCD相机时间精度:相机时间精度:1/7s 1/10s 时间分辨率:时间分辨率: 1/100

12、s 10ns(高一个数量级)(高一个数量级)图图1 DG535照片照片Fig 12 geometry of scramjet combustor3.2 HIT-CH4 fueled scramjet combustorBy SCRAM3DBrief introduction to engine combustorBrief introduction to engine combustorfuel strut location: x=80220mmIgnition torches(A,C): x=670mm, O2 + CH4air injector(ramp): x=1000mmInlet:

13、M=3.0, P0=4.0MPa(p=104.3kPa), T0=2100K (T=813.9K),u=1688.9m/s, air: O2:23.2%, N2:76.8%1st strut injector: Mj=1.0,Toj=1200K,CH4,dj=2.5mm,m=19.33g/s,number: 12。Pj=147.kPa,Tj=1131K,u=810.9m/s,Igniter(torch A, methane burner) : Mj=1.0, T0j=1900K, m=24g/s, CH4:O2=1:1(CH4 rich)Torch mass fraction: 1. CH4

14、0.004884073 2. O2 5.285730481E-15 3. N2 0.0 4. H2 0.123733598 5. H 4.014750392E-6 6. O 0.0 7. OH 2.27681481E-8 8. H2O 0.006166774 9. CH3 7.332419562E-6 10. CO 0.863096961 11. CO2 0.002097583 12. HCO 5.005569052E-7 13. CH2O 8.729182465E-6 14. CH3O 0.0 15. C2H6 4.114098806E-7Igniter(torch C): Mj=1.0,T

15、0=2500K, m=24g/s, CH4:O2=1:5(O2 rich)Mass fraction: 1. CH4 2.05154E-06 2. O2 0.15635 3. N2 0.0 4. H2 3.39518E-02 5. H 1.90616E-02 6. O 3.31304E-02 7. OH 0.10162 8. H2O 0.40582 9. CH3 4.09555E-06 10. CO 9.96597E-02 11. CO2 0.15039 12. HCO 2.45808E-06 13. CH2O 1.57196E-06 14. CH3O 2.55671E-08 15. C2H6

16、 4.62867E-13Air injector(ramp): Mj=1.0, P0=3.5MPa, T0=300K, YO2=23.2%, YN2=76.8%, dj1=3mm(side wall),dj2=5mm(upper and bottom wall )Fig13 grid near fuel strutsTable 1 computed cases for HIT scramjet combustorCase A2: with chemistry and pdf modelsCase A2: with chemistry and pdf modelsFig14 contours o

17、f temperature and species mass fraction(caseA2)Fig15 contours of species mass fraction(CH4、O2、H2、CO)Case A3Case A3torch Atorch AFig16 contours of species rate depletion and productionWith Torch A, local methane is rich and auto-ignition doesnt occurCase A4torch CFig 17 contours of species massWith t

18、orch C, rich O2 can enhance CH4 auto-ignitionFig 18 contours of species rate of depletion and productionCase A5torch C+ new oneFig19 pressure contours and pressure along symmetry of upper wallFig20 temperature contours and temperature along middle line in side wallFig21 contours of pressure, tempera

19、ture and Mach numberFig 22 contours of temperature and Mach number (caseA5)Fig 23 contours of species mass fractinFig24 contours of species production and depletionFig 25 snapshots of droplets clouds with evapouration3.6 HIT-kerosene fueled engine3.6 HIT-kerosene fueled engineLimited releaseBy our c

20、ode SCRAM3DLimited releaseFig 26 snapshots of temperature with droplets clouds激波和射流相互作用Fig 26 snapshots of temperature with droplets clouds(a)计算示意图(2)计算网格图6.1 计算域和计算网格示意图(a)对称面上的静压云图(b)对称面上的颗粒分布(c)沿流向SMD (d)穿透深度曲线图6.6对称面静压云图、液滴分布、沿流向SMD和穿透曲线(Case12,35g/s,WAVE)图6.6 不同Mach数对粒径分布的影响图6.6 不同Mach数对穿透深度的影响

21、图6.6 不同来流密度对穿透深度的影响图6.6 不同攻角对粒径分布的影响(22.50,150, 300)图6.6 不同文献拟合的穿透深度(Case12, 35g/s, WAVE)图6.6 不同文献拟合的穿透深度(Case32, 20g/s, WAVE)Fig 29 snapshots of primary jet breakup in subsonic inflow at nozzle nearby1. Motivation1.1 question description1.1 question descriptionRANS: Reynolds average(time averaged)m

22、omentum equation :Reynolds stresses( ) over cell size and approximated by turbulence models(SST etc)Species mass equation: (1) gradient method (2) species mass turbulent diffusion k=ijiju u =tkikktiuScx=kkkkiDDx(3) (3) source term for chemistrysource term for chemistry: :general formula of chemistry

23、 kineticsgeneral formula of chemistry kinetics11nsnskjjkjjjjnnexpexpfimfjfjfjumbjbibjbjuEkA TR TEkA TR TArrhenius Law for jth- forward and backward stepskEnergy equation:(1)Heat conduction: (2) neglectedLES: Favre averaged(mass averaged), averaged terms are similar to those of RANS but in sub-gridsD

24、NS: laminar equation, no such problems=iTTxiiiuEpu Eu p RANS equationsRANS equations,ggggg vg vg vQEFGEFGStxyzxyz121212111, , ,0,0,0,0klklTgnsnsnsNRnsnsllkkkjkjfjbjjllllQm n kESS TSWkkWW Averaged source termsAveraged source terms1.2 physical meaning1.2 physical meaning(1)turbulencedifferent time sca

25、le corresponding to scales from Kolmogorov to integrated scales(2)chemistry steps different time scale corresponding to each stepFor supersonic flow turbulent and chemical reacting non-equlibrium flows bilateral interactions1mkmktDRelated cases: (1)fast flow(flow frozen): 0 Only model of Arrehnius l

26、aw(2) fast chemistry(chemistry frozen): single non-reversed chemistry kinetics model(3)finite rate of chemistry model: 1kmDkmDkmDFig 1 classical turbulent combustion diagram: combustion regimes are identified in terms of length( ) and velocity ( ) ratios using log-log scaletl0Lu sFig 2 modified turb

27、ulent combustion diagram: combustion regimes are identified in terms of length( ) and velocity( ) ratios using log-log scaletl0Lu s models are required to approximate source terms(1)model 1 directed approach similar to Reynolds stress, but complex terms are expanded impossibly due to more than three

28、 variables. closure is based on physical analysis(2)model 2: geometrical analysis flame front iso-surface( ) flamelet laminar flame element 2. Methodologyk, ZkYk(3) model 3: turbulent mixing large Damkohler number and neglecting chemistry(frozen), turbulent combustion is mixing controlled, mean reac

29、tion rate mean mixing rate (4) Model 4: statistical methodNo requirement of flame front information, mean reaction rate depends on instantaneous reaction rate and joint probability density function(pdf). No evidence shows one model is superior than others. The unknown quantities may be formulated al

30、gebrically or satisfied by transport equation Fig3 modeling methods for turbulent combustion(geometrical analysis, mixing description, statistical approach )Brief interpretation of coding(1)Grid, block boundary condition specified by Gridgen commercial software(2)LU-SGS for implicit scheme and AUSM

31、TVD for explicit schemes in solving N-S equation(3)Multi-block and MPI parallel computation(4)Chemistry source terms are treated implicitly(5)turbulence models: k- family (6)Turbulence and combustion interaction: flamelet and assumed pdf models(7)Two-phase flow: two-fluid and Lagrangian models3. Res

32、ults and Discussions3.1 DLR scramjet combustor3.1 DLR scramjet combustorinlet cross: 45mm 50mm, length 300mmWedge tip: x=35mm, y=25mmInjector: diameter 1mm, number 15Fuel: hydrogenIncoming flow: vitiated air Fig4 geometry of DLR scramjet combustor(a)density contours(b)temperature contours(c)mass fra

33、ction contours of H2OFig 5 Results unsteady flamelet model(a)x=53mm (b) x =100mm (c) x =208mmFig 6 temperature at streamwise positions based on unsteady flamelet model(d) x =53mm (e) x =100mm (f) x =182mmFig 7 velocity along streamwise based on unsteady flamelet model(a)density contours(b)temperatur

34、e contours(c)mass fraction contours of H2OFig 9 Contours based on assumed pdf model (a) x =53mm (b) x =100mm (c) x =208mm (d) x =53mm (e) x =100mm (f) x =182mmFig 10 temperature and velocity along streamwise based on pdf modelTDLASTDLAS在燃烧测量中的应用在燃烧测量中的应用(1)激光器调制电压频率2kHz(2)数据采样速率为20MBHz/s(3)uaverage=

35、633.06m/s,相对误差-5.09%5.98%。理论速度618.29m/s,相差14.77m/s,误差2.39%。 (4)水汽平均温度135.41K,理论值105.71K,相差29.7K,水汽分压34.6kPa。(5)图3.8(a)水汽TDLAS测速结果图3.8(b)水汽TDLAS测温结果图3.10测速示意图(1 2ICP 3 4半导体激光器 5 6探测器 7示波器)图3.12激波管2区气流速度测量图3.11测量系统示意图(1 2ICP 3 4半导体激光器 5 6探测器 7 8示波器 9DG535延时器)362222290.79 90.210.793320.210.21 2C HONCOH

36、 ON360.420.0479C HairPP配制化学计量比的丙烯/空气预混气满足完全燃烧按Dalton分压定律,C3H6和空气分压比为 根据配制预混气总压确定丙烯和空气分压力。先将储气罐抽真空,依次充入预定压力丙烯和空气。预混时间超过24小时可进行实验。图3.14 不同P4/P1对5区温度的影响图3.16 不同P4/P1对水汽温度和浓度测量的影响(丙烯/空气,P4=200kPa,增大P1)图3.17 不同P4/P1对水汽温度的影响(丙烯/空气,P1=1.6kPa,增大P4)燃烧加热风洞和高焓脉冲风洞设计燃烧加热风洞和高焓脉冲风洞设计(1)CS-07直连式燃烧加热风洞(航天三院31所)(2)C

37、S-15台自由射流真空引射风洞(航天三院31所)(3)CS-13台双OH-PLIF/纹影测量系统设计调试(航天三院31所)(4)600真空引射脉冲风洞(29基地高超中心)(5) 3000真空引射热结构风洞(29基地所)(6)中科院力学所自由射流风洞改造(力学所)(7)重活塞膨胀管风洞(29基地5所)(8)重活塞驱动反射型激波风洞(航天11院2所)序号序号马赫数马赫数总温总温总压总压流量流量喷管喷管吼道吼道水水摩尔比摩尔比氧氧摩尔比摩尔比氮氮摩尔比摩尔比分子量分子量比热比比热比 MaT0/KP0/MPaG0/kg/sD*/mmnH2OnO2nN2M1 14.09001.440.686171.30

38、0.1050.2100.68527.7881.3232 25.012503.328.961103.220.1710.2100.61927.1321.2933 36.015105.015.00364.240.2220.2100.56826.6181.2764 47.019008.07.18837.650.3070.2100.48325.7721.253表1 600风洞来流入口条件(a)静压(b)静温(c)速度图2.2.4-7 真空抽吸式风洞流场参数云图(Ma=7,t=1.0s)(d)Ma数t (s)P (kPa)00.20.40.60.811.20510152025图2.2.4-13 真空球指定

39、点p-t曲线(Ma=7)(1)燃烧室380mm、长860mm,左端为喷注器(2)右端接长600mm、喉道 170mm圆弧收缩扩张段(3)喷注器有84个16mm喷嘴,空气入口距喷注器100mm,宽度50mm,空气入口为长600mm,喉道直径170mm收缩扩张段,收缩扩张段型线为圆弧(4)出口至第二收缩扩张段距离为1m(5)3D稳态计算,燃烧模型为Eddy-Dissipation模型(6)混合物为C2H5OH与air,工作压强8.03MPa(7)m C2H5OH=12.875kg/s(1/4),YC2H5OH和YO2为25%、75%, T=300K(8)空气入口质量流量为41.6kg/s,温度为3

40、00K,XO2 、 XN2为21%、79%(9)初始条件设为压强0Pa、温度300K、速度为0, XO2、 XN2 为21%、79%图1 计算模型示意图图4 xy平面温度分布图6 出口处温度分布图1 燃烧室流场压强云图图2 xy平面压强分布图2 燃烧室流场温度云图图3 燃烧室流场速度云图图4 喷管入口处温度云图图5 第二个喉道附近流场流线图PLIF layout 2 : PLIF layout 2 : laser sheet entered from top window laser sheet entered from top windowYAG and DYE lasersYAG and

41、DYE lasersMie scattering: Mie scattering: laser beamFig4 detector schematic of droplet analyzer based on Mie scatteringFig4 detector schematic of droplet analyzer based on Mie scatteringMie scattering assembly with tunnelMie scattering assembly with tunnel1 laser at wavelength 532nm1 laser at wavele

42、ngth 532nm2 :test section2 :test section3: detector3: detectorhigh-speed schiliren is used in experimentshigh-speed schiliren is used in experiments(1 1)high-speed schliren imaginghigh-speed schliren imaging3. Results and Discussions3. Results and DiscussionsFig5 high-speed schliren images for cavit

43、y type 1, Pj=0.5MPaFig5 high-speed schliren images for cavity type 1, Pj=0.5MPaFig6 high-speed schliren images for Fig6 high-speed schliren images for cavity type 2 cavity type 2 , Pj=0.5MPa, Pj=0.5MPa =90=900 0 =90=900 0Fig 7 high-speed schliren images for Fig 7 high-speed schliren images for cavit

44、y type 2cavity type 2 =90=900 0 =10=100 0Fig7 high-speed schliren images for Fig7 high-speed schliren images for cavity type 2cavity type 2Fig8 high-speed schliren images Fig8 high-speed schliren images for cavity type 3for cavity type 3cut angle 45cut angle 450 0 atat leading edge leading edgeFig9

45、high-speed schliren images for Fig9 high-speed schliren images for cavity type 3cavity type 3cut angle 30cut angle 300 0 atat leading edge leading edgeFig10 high-speed schliren images for cavity type Fig10 high-speed schliren images for cavity type 3 43 4Fig11 PLIF and schliren images for cavity typ

46、e 1, Pj=0.5MPaFig11 PLIF and schliren images for cavity type 1, Pj=0.5MPa(a) PLIF(a) PLIF(b) PLIF(b) PLIF(c) PLIF + schliren(c) PLIF + schlirenFig12 PLIF and schliren images for Fig12 PLIF and schliren images for cavity type 1cavity type 1, Pj=1.0MPa, Pj=1.0MPa(a) PLIF(a) PLIF(b) PLIF(b) PLIFFig13 P

47、LIF and schliren images for Fig13 PLIF and schliren images for cavity type 2cavity type 2, , =45=450 0, Pj=1.0MPa, Pj=1.0MPa(a) PLIF(a) PLIF(b) PLIF(b) PLIFFig14 PLIF and schliren images for Fig14 PLIF and schliren images for cavity type 2cavity type 2, , =10=100 0, Pj=1.0MPa, Pj=1.0MPa(a) PLIF(a) P

48、LIF(b) PLIF(b) PLIFFig15 PLIF images for Fig15 PLIF images for cavity type 3cavity type 3, ,Cut angle 45Cut angle 450 0, Pj=1.0MPa, Pj=1.0MPa(a) PLIF(a) PLIF(b) PLIF(b) PLIFFig16 PLIF images for Fig16 PLIF images for cavity type 3cavity type 3, ,Cut angle 45Cut angle 450 0, Pj=1.0MPa, Pj=1.0MPa(a) P

49、LIF(a) PLIF(b) PLIF(b) PLIFFig17 PLIF images for cavity type 4, Pj=1.0MPaFig17 PLIF images for cavity type 4, Pj=1.0MPa(a) PLIF(a) PLIF(b) PLIF(b) PLIFFig18 PLIF images for transverse jet cross-section for a open cavity, Fig18 PLIF images for transverse jet cross-section for a open cavity, Pj=1.0MPa

50、Pj=1.0MPa(c) (c) x/dj=30 (d) /dj=30 (d) x/dj=40/dj=40(a) (a) x/dj=30 (b) /dj=30 (b) x/dj=40/dj=40Fig19 SMD measurement of kerosene jet from a plate Pj=1.0MPaFig19 SMD measurement of kerosene jet from a plate Pj=1.0MPaSMD: 6SMD: 6 m 8m 8 mmFig20 SMD measurement of kerosene jet from cavity type 1 Fig2

51、0 SMD measurement of kerosene jet from cavity type 1 Pj=1.0MPaPj=1.0MPaSMD: 6SMD: 6 m 8m 8 mmFig21 optic alignment of holography for SMD measurementFig21 optic alignment of holography for SMD measurementDr YANG Shunhuas workDr YANG Shunhuas workFig22 SMD measurement by holography for water jet from

52、plate Fig22 SMD measurement by holography for water jet from plate Pj=2.0MPa, M=2.0,dj=0.5mmPj=2.0MPa, M=2.0,dj=0.5mmSMD: 4SMD: 4 m 10m 10 mmDr YANG Shunhuas workDr YANG Shunhuas work(1 1)test rigtest rigHow to produce kerosene aerosol?How to produce kerosene aerosol?aerosol shock tube, different fr

53、om Hanson aerosol shock tube, different from Hanson style for aerosol productionstyle for aerosol production2. Methodology2. Methodologyaerosol shock tubeaerosol shock tube Hanson Style, 2008 Hanson Style, 2008Tsinghuas style(2006)Tsinghuas style(2006) Fig 2 schematic shock tube Fig 2 schematic shoc

54、k tube1 driver section 2 diaphragm section 3 driven section 4 optic window1 driver section 2 diaphragm section 3 driven section 4 optic window 5 aerosol inlet 6 aerosol tank 7 vaccum valves 8 pressure gauge 5 aerosol inlet 6 aerosol tank 7 vaccum valves 8 pressure gaugeneedle burstingneedle bursting

55、drivendriven section sectiondriver sectiondriver sectionProduction of kerosene aerosolkerosene nozzle dj=0.5mmkerosene nozzle dj=0.5mmkerosene aerosol outletkerosene aerosol outletPressurized air inletPressurized air inletaerosol inlet assemblyaerosol inlet assemblyFig3 modeling methods for turbulen

56、t combustion(geometrical analysis, mixing description, statistical approach )aerosol production assemblyair bottleair bottleaerosol tankaerosol tankregulatorregulatorpressure meterpressure meterkerosene nozzlekerosene nozzlekerosene cupkerosene cuppressure meterpressure meter(2 2)data aquisitiondata

57、 aquisition auto-ignition delay: time interval of signals auto-ignition delay: time interval of signals between pizeo-electric gauge and photomultiplierbetween pizeo-electric gauge and photomultiplier(3 3)luminosity luminosity imagingimagingchemoluminescene: OH radicalchemoluminescene: OH radicalIma

58、ging: ICCDImaging: ICCDSynchronization: DG535Synchronization: DG535Schematic of emission imagingSchematic of emission imagingoscilloscopeoscilloscopeDG535DG535test sectiontest sectionPCPCamplifieramplifierPCB1PCB3PCB1PCB3PMTPMTimpedanceimpedance adaptor adaptorICCDICCD(1 1)auto-ignition delayauto-ig

59、nition delay3. Results and Discussions3. Results and DiscussionsDavidson & Hanson 2000Davidson & Hanson 2000Davidson & Hanson 2005Davidson & Hanson 2005T T5 5=1554K, P=1554K, P5 5=0.115MPa=0.115MPa Definition of auto-ignition delayDefinition of auto-ignition delay peak of emission hi

60、storypeak of emission history maximum slope of emission historymaximum slope of emission history horizontal intersection point of maximum slope of horizontal intersection point of maximum slope of emission historyemission historyRepeatability of test resultsNo.T1 (K)MsT5 (K)p5 (MPa)ig (ms)12883.18315140.1160.53822

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论