版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第1讲实数的有关概念第2讲实数的运算与实数的大小(dxio)比较第3讲整式及因式分解第4讲分式第5讲数的开方及二次根式第一页,共109页。第第1讲讲 实数实数(shsh)的有关概的有关概念念第二页,共109页。第第1讲讲 考点考点(ko din)聚焦聚焦考点聚焦考点聚焦1按定义(dngy)分类:考点考点(ko din)1 (ko din)1 实数的概念及分类实数的概念及分类有理数有理数整数整数正整数正整数零零负整数负整数正分数正分数负分数负分数第三页,共109页。2按正负分类:零零正整数正整数正分数正分数(fnsh)负整数负整数(zhngsh)负分数负分数(fnsh)第第1讲讲 考点聚焦考点聚
2、焦第四页,共109页。第第1讲讲 考点考点(ko din)聚焦聚焦考点考点(ko din)2 (ko din)2 实数的有关概念实数的有关概念名称名称定义定义性质性质数轴数轴规定了规定了_、_、_的直的直线线数轴上的点与实数一一数轴上的点与实数一一对应对应相反数相反数只有只有_不同的两个不同的两个数互为相反数数互为相反数若若a a、b b互为相反数,则互为相反数,则有有a ab b0 0,| |a a| | |b b|.0|.0的相反数是的相反数是0 0倒数倒数_为为1 1的两个数互的两个数互为倒数为倒数0 0没有倒数,倒数等于没有倒数,倒数等于本身的数是本身的数是1 1或或1 1原点原点正方
3、向正方向(fngxing)单位长度单位长度符号符号乘积乘积第五页,共109页。第第1讲讲 考点考点(ko din)聚焦聚焦名称名称定义定义性质性质绝对绝对值值数轴上表示数数轴上表示数a a的点与原点的的点与原点的_,记作记作| |a a| |数法数法把一个数写成把一个数写成_的形式的形式( (其中其中1|1|a a|10.|00a a b b;a ab b00a a 1 1a a b b; a/a/b b 1 1a ab b; a/a/b b 11a a |b b| |a a b b;| |a a| | |b b| |a ab b;| |a a| b b其他方法其他方法除此之外,还有平方法、倒
4、数法等方法除此之外,还有平方法、倒数法等方法第二十四页,共109页。第第2讲讲 归类归类(u li)示例示例归类示例归类示例 类型类型(lixng)之一实数的运算之一实数的运算 命题角度:命题角度:1 1实数的加减乘除乘方开方实数的加减乘除乘方开方(ki fng)(ki fng)运算;运算;2 2实数的运算在实际生活中的应用实数的运算在实际生活中的应用 例例1 1 20122012丽水丽水 计算:计算: 第二十五页,共109页。第第2讲讲 归类归类(u li)示例示例第二十六页,共109页。第第2讲讲 归类归类(u li)示例示例 (1)在进行实数的混合运算时,首先要明确与实数有关(yugun
5、)的概念、性质、运算法则和运算律,要弄清按怎样的运算顺序进行中考中常常把绝对值、锐角三角函数、二次根式结合在一起考查 (2)要注意零指数幂和负指数幂的意义负指数幂的运算: (a0,且p是正整数),零指数幂的运算: 1(a0)第二十七页,共109页。 类型类型(lixng)(lixng)之二实数的大小之二实数的大小比较比较 命题角度:命题角度:1 1利用实数利用实数(shsh)(shsh)的比较大小法则比较大小;的比较大小法则比较大小;2 2实数实数(shsh)(shsh)的大小比较常用方法的大小比较常用方法第第2讲讲 归类归类(u li)示例示例C 第二十八页,共109页。第第2讲讲 归类归类
6、(u li)示例示例第二十九页,共109页。第第2讲讲 归类归类(u li)示例示例 变式题变式题 如图如图2 21 1,若,若A A是实数是实数a a在数轴上对应在数轴上对应的点,则关于的点,则关于a a、a a、1 1的大小关系表示正确的是的大小关系表示正确的是( () ) 图图2 21 1A Aa a1 1a a B Ba aa a1 1C C1 1a aa a D Da aa a1 1A 解析解析 互为相反数所表示的点关于原点对称互为相反数所表示的点关于原点对称(duchn)(duchn),所以,所以a a,a a 所表示的点关于原点对称所表示的点关于原点对称(duchn)(duchn
7、),故,故a a1 1a.a.第三十页,共109页。 两个实数(shsh)的大小比较方法有:(1)正数大于零,负数小于零;(2)利用数轴;(3)差值比较法;(4)商值比较法;(5)倒数法;(6)取特殊值法,(7)计算器比较法等第第2讲讲 归类归类(u li)示例示例第三十一页,共109页。 类型之三类型之三 实数实数(shsh)(shsh)与数轴与数轴 第第2讲讲 归类归类(u li)示例示例D命题角度:命题角度:1实数与数轴上的点一一对应关系;实数与数轴上的点一一对应关系;2数轴与相反数、倒数、绝对值等概念结合数轴与相反数、倒数、绝对值等概念结合(jih);3数轴与实数大小比较、实数运算结合
8、数轴与实数大小比较、实数运算结合(jih);4利用数轴进行代数式的化简利用数轴进行代数式的化简 例例3 3 20122012聊城聊城 在如图在如图2 22 2所示的数轴上,点所示的数轴上,点B B与点与点C C关于点关于点A A对称,对称,A A、B B两点对应的实数分别是两点对应的实数分别是3 3和和1 1,则点,则点C C所对应的实数是所对应的实数是( () )A A1 13 B3 B2 23 3C C23231 D1 D23231 1图图22第三十二页,共109页。 解析解析(ji x) (ji x) 设点设点 C C 所对应的实数是所对应的实数是x x,则有则有x x3333( (1)
9、1),解得,解得x x23231.1.第第2讲讲 归类归类(u li)示例示例第三十三页,共109页。 (1)互为相反数所表示的点关于原点对称; (2)绝对值相等的数所表示的点到原点的距离相等; (3)实数与数轴上的点一一对应,故而常将实数及表示实数的字母在数轴上表示出来,然后结合相反数、绝对值及数轴上数的符号特征(tzhng)等相关知识来解决实数的有关问题第第2讲讲 归类归类(u li)示例示例第三十四页,共109页。 类型之四类型之四 探索实数探索实数(shsh)中的规律中的规律 命题命题(mng t)(mng t)角度:角度:1. 1. 探究实数运算规律;探究实数运算规律;2. 2. 实
10、数运算中阅读理解问题实数运算中阅读理解问题 第第2讲讲 归类归类(u li)示例示例例例4 4 20122012广东广东 观察下列等式观察下列等式: 例例4 4 20122012广东广东 观察下列等观察下列等式:式: 第三十五页,共109页。第第2讲讲 归类归类(u li)示例示例请解答下列问题:请解答下列问题:(1)(1)按以上按以上(ysh(ysh ng)ng)规律列出第规律列出第5 5个等式:个等式:a5a5_;(2)(2)用含用含n n的代数式表示第的代数式表示第n n个等式:个等式:anan_(n_(n为正整数为正整数) );(3)(3)求求a1a1a2a2a3a3a4a4a100a
11、100的值的值 第三十六页,共109页。第第2讲讲 归类归类(u li)示例示例第三十七页,共109页。 关于数式规律性问题的一般解题思路:(1)先对给出的特殊数式进行观察、比较;(2)根据观察猜想、归纳出一般规律;(3)用得到的规律去解决其他问题对数式进行观察的角度及方法:(1)横向观察:看等号左右两边什么不变,什么在变,以及变化的数字或式子间的关系;(2)纵向(zn xin)观察:将连续的几个式子上下对齐,观察上下对应位置的式子什么不变,什么在变,以及变化的数字或式子间的关系第第2讲讲 归类归类(u li)示例示例第三十八页,共109页。第第2讲讲 回归回归(hugu)教材教材硬币在数轴上
12、滚动得到硬币在数轴上滚动得到(d do)(d do)的启示的启示 回归教材回归教材教材母题人教版八上教材母题人教版八上P87T6P87T6比较比较(bjio)(bjio)下列各组数的大小:下列各组数的大小: 第三十九页,共109页。第第2讲讲 回归回归(hugu)教材教材第四十页,共109页。第第2讲讲 回归回归(hugu)教材教材 点析点析 实数大小比较的常用实数大小比较的常用(chn yn)(chn yn)方法有二次方法有二次根式被开方数大小比较法,如根式被开方数大小比较法,如(1) (1) ;求近似值法,如;求近似值法,如(3)(3);平方法,如平方法,如(4)(4) 第四十一页,共10
13、9页。1 120112011威海威海 在实数在实数(shsh)0(shsh)0、33、22、2 2中,中,最小的数是最小的数是( () )A A2 B2 B3 C3 C0 D.20 D.2第第2讲讲 回归回归(hugu)教材教材中考变式A 2 220102010嘉兴嘉兴 比较比较(bjio)(bjio)大小:大小:22_(22_(填填“”“”“”或或“”)”)3 320102010郴州郴州 比较比较(bjio)(bjio)大小:大小:7_3(7_3(填写填写“”“”)“”) 第四十二页,共109页。第第3讲讲整式整式(zhn sh)及因式分解及因式分解 第四十三页,共109页。第第3讲讲 考点
14、考点(ko din)聚焦聚焦考点聚焦考点聚焦考点考点1 1 整式整式(zhn sh)(zhn sh)的概念的概念 单单项项式式定义定义数与字母的数与字母的_的代数式叫做单项的代数式叫做单项式,单独的一个式,单独的一个_或一个或一个_也是单项式也是单项式次数次数一个单项式中,所有字母的一个单项式中,所有字母的_叫叫做这个单项式的次数做这个单项式的次数系数系数单项式中的数字因数叫做单项式的系数单项式中的数字因数叫做单项式的系数防错提醒防错提醒字母字母x x的次数是的次数是1 1而不是而不是0 0,单项式的系数,单项式的系数包括它前面的符号,如包括它前面的符号,如 的系数为的系数为乘积乘积(chng
15、j) 数数 字母字母 指数的和指数的和 第四十四页,共109页。第第3讲讲 考点考点(ko din)聚焦聚焦多多项项式式定义定义几个单项式的几个单项式的_叫做多项式叫做多项式次数次数一个多项式中,一个多项式中,_的次数,叫的次数,叫做这个多项式的次数做这个多项式的次数项项多项式中的每个多项式中的每个_叫做多项式的项叫做多项式的项整式整式_统称整式统称整式次数次数(csh)最高的项最高的项 和和 单项式单项式 单项式和多项式单项式和多项式 第四十五页,共109页。第第3讲讲 考点考点(ko din)聚焦聚焦考点考点(ko din)2 (ko din)2 同类项、合并同类项同类项、合并同类项 名称
16、名称概念概念防错提醒防错提醒同类项同类项所含字母所含字母_,并且,并且相同字母的指数也分别相同字母的指数也分别_的项叫做同类项的项叫做同类项,几个常数项也是同类项,几个常数项也是同类项同类项与系数无关,也同类项与系数无关,也与字母的排列顺序无关与字母的排列顺序无关,如,如7 7xyxy与与yxyx是同类是同类项项合并同合并同类项类项把多项式中的同类项合并把多项式中的同类项合并成一项叫做合并同类项,成一项叫做合并同类项,合并同类项后,所得项的合并同类项后,所得项的系数是合并前各同类项的系数是合并前各同类项的系数的和,且字母部分不系数的和,且字母部分不变变只有同类项才能合并,只有同类项才能合并,如
17、如x x2 2x x3 3不能合并不能合并相同相同(xin tn) 相同相同 第四十六页,共109页。考点考点(ko din)3 (ko din)3 整式的运算整式的运算 第第3讲讲 考点考点(ko din)聚焦聚焦类别类别法则法则整式的整式的加减加减整式的加减实质就是整式的加减实质就是_一般地,几个整式相加减一般地,几个整式相加减,如果有括号就先去括号,再合并同类项,如果有括号就先去括号,再合并同类项幂幂的的运运算算同底数幂相同底数幂相乘乘底数不变,指数相加底数不变,指数相加. . 即:即:a am ma an n_(_(m m,n n都是整数都是整数) )幂的乘方幂的乘方底数不变,指数相乘
18、底数不变,指数相乘. . 即:即:( (a am m) )n n_(_(m m,n n都是整数都是整数) )积的乘方积的乘方等于把积的每一个因式分别乘方,再把所得的幂等于把积的每一个因式分别乘方,再把所得的幂相乘即:相乘即:( (abab) )n n_(_(n n为整数为整数) )同底数幂相同底数幂相除除底数不变,指数相减底数不变,指数相减. . 即:即:a am ma an n_(_(a a00,m m、n n都为整数都为整数) )合并合并(hbng)同类项同类项 amn amn anbn amn 第四十七页,共109页。整整式式的的乘乘法法单项式与单单项式与单项式相乘项式相乘把它们的系数、
19、相同字母分别相乘,对于把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同只在一个单项式里含有的字母,则连同它的指数作为积的一个因式它的指数作为积的一个因式单项式与多单项式与多项式相乘项式相乘就是用单项式去乘多项式的每一项,再把就是用单项式去乘多项式的每一项,再把所得的积相加,即所得的积相加,即m m( (a ab bc c) )mamambmbmcmc多项式与多多项式与多项式相乘项式相乘先用一个多项式的每一项乘另一个多项式先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即的每一项,再把所得的积相加,即( (m mn n)()(a ab b) )mama mb
20、mbnananbnb第第3讲讲 考点考点(ko din)聚焦聚焦第四十八页,共109页。第第3讲讲 考点考点(ko din)聚焦聚焦整式整式的除的除法法单项式除以单单项式除以单项式项式把系数与同底数幂分别相除,作为商把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因母,则连同它的指数作为商的一个因式式多项式除以单多项式除以单项式项式先把这个多项式的每一项分别除以这先把这个多项式的每一项分别除以这个单项式,然后把所得的商相加个单项式,然后把所得的商相加乘法乘法公式公式平方差公式平方差公式 ( (a ab b)()(a
21、ab b) )_完全平方公式完全平方公式( (a ab b) )2 2_常用恒等变换常用恒等变换(1)(1)a a2 2b b2 2_(2)(2)(a ab b) )2 2( (a ab b) )2 24 4ababa2b2 a22abb2 (ab)22ab (ab)22ab第四十九页,共109页。考点考点(ko din)4 (ko din)4 因式分解的概念因式分解的概念 第第3讲讲 考点考点(ko din)聚焦聚焦因因式式分分解解定义定义把一个多项式化为几个把一个多项式化为几个_的形式的形式,像这样的式子变形,叫做多项式的因,像这样的式子变形,叫做多项式的因式分解式分解防错防错提醒提醒(1
22、)(1)因式分解专指多项式的恒等变形;因式分解专指多项式的恒等变形;(2)(2)因式分解的结果必须是几个整式的因式分解的结果必须是几个整式的积的形式;积的形式;(3)(3)因式分解与整式乘法互因式分解与整式乘法互为逆变形为逆变形整式整式(zhn sh)(zhn sh)的积的积 第五十页,共109页。考点考点5 5 因式分解因式分解(yn sh fn ji)(yn sh fn ji)的相关概念及基本方法的相关概念及基本方法 第第3讲讲 考点考点(ko din)聚焦聚焦公因式公因式定义定义一个多项式各项都含有的公共的因式,一个多项式各项都含有的公共的因式,叫做这个多项式各项的公因式叫做这个多项式各
23、项的公因式提取公提取公因式法因式法定义定义一般地,如果多项式的各项都有公因式一般地,如果多项式的各项都有公因式,可以把这个公因式提到括号外面,将,可以把这个公因式提到括号外面,将多项式写成因式的乘积形式,即多项式写成因式的乘积形式,即mamambmbmcmc_应用注应用注意意(1)(1)提公因式时,其公因式应满足:提公因式时,其公因式应满足: 系数是各项系数的最大公约数;字母系数是各项系数的最大公约数;字母取各项相同字母的最低次幂;取各项相同字母的最低次幂;(2)(2)公因式公因式可以是数字、字母或多项式;可以是数字、字母或多项式;(3)(3)提取公提取公因式时,若有一项全部提出,括号内的因式
24、时,若有一项全部提出,括号内的项应是项应是“1”1”,而不是,而不是0 0m(abc) 第五十一页,共109页。第第3讲讲 考点考点(ko din)聚焦聚焦运用公式法运用公式法平方差公平方差公式式a a2 2b b2 2_完全平方完全平方公式公式a a2 22 2ababb b2 2_ a a2 22 2ababb b2 2_因式分解的一般步骤因式分解的一般步骤一提一提( (提取公因式提取公因式) );二套二套( (套公式法套公式法) );一直分解到不能分解为止一直分解到不能分解为止(ab)(ab) (ab)2 (ab)2 第五十二页,共109页。第第3讲讲 归类归类(u li)示例示例归类示
25、例归类示例 类型类型(lixng)之一同类项之一同类项 命题角度:命题角度:1. 1. 同类项的概念同类项的概念(ginin)(ginin);2. 2. 由同类项的概念由同类项的概念(ginin)(ginin)通过列方程组求解同类项通过列方程组求解同类项的指数中字母的值的指数中字母的值 例例1 1 20122012雅安雅安 如果单项式如果单项式 是同类项,那是同类项,那么么a a,b b的值分别为的值分别为( () )A A2 2,2 B2 B3 3,2 C2 C2 2,3 D3 D3 3,2 2D D 解析解析 依题意知两个单项式是同类项,根据相同字母的指数依题意知两个单项式是同类项,根据相
26、同字母的指数相同列方程,得相同列方程,得 第五十三页,共109页。第第3讲讲 归类归类(u li)示例示例 (1)同类项必须符合两个条件:第一所含字母相同,第二相同字母的指数(zhsh)相同,两者缺一不可 (2)根据同类项概念相同字母的指数(zhsh)相同列方程(组)是解此类题的一般方法 第五十四页,共109页。 类型类型(lixng)(lixng)之二整式的运算之二整式的运算 命题命题(mng t)(mng t)角度:角度:1. 1. 整式的加减乘除运算;整式的加减乘除运算;2. 2. 乘法公式乘法公式 第第3讲讲 归类归类(u li)示例示例例例2 2 20122012湛江湛江 下列运算中
27、,正确的是下列运算中,正确的是( () )A A3 3a a2 2a a2 22 B2 B( (a a2 2) )3 3a a5 5C Ca a3 3a a6 6a a9 9 D D(2(2a a2 2) )2 22 2a a4 4C 解析解析 A A是合并同类项应为是合并同类项应为2 2a a2 2;B B为幂的乘方,底数不变为幂的乘方,底数不变,指数相乘,故不正确;,指数相乘,故不正确;C C是同底数幂相乘,底数不变是同底数幂相乘,底数不变,指数相加,正确;,指数相加,正确; D D是积的乘方与幂的乘方综合运用,是积的乘方与幂的乘方综合运用,不正确不正确第五十五页,共109页。第第3讲讲
28、归类归类(u li)示例示例 (1)(1)进行整式的运算时,一要注意合理选择幂的运算法则进行整式的运算时,一要注意合理选择幂的运算法则,二要注意结果的符号,二要注意结果的符号(fh(fh o)o)(2)(2)不要把同底数幂的乘法和整式的加减法混淆,如不要把同底数幂的乘法和整式的加减法混淆,如a3a3a5 a5 a8a8和和a3a3a3a32a3. (am)n2a3. (am)n和和ananamam也容易混淆也容易混淆(3)(3)单项式的除法关键:注意区别单项式的除法关键:注意区别“系数相除系数相除”与与“同底同底数幂相除数幂相除”的含义,如的含义,如6a56a53a23a2(6(63)a53)
29、a52 22a3, 2a3, 一定一定不能把同底数幂的指数相除不能把同底数幂的指数相除第五十六页,共109页。第第3讲讲 归类归类(u li)示例示例例例3 20123 2012湛杭州湛杭州 化简:化简:2(m2(m1)m1)mm(mm(m1)(m1)(m1)m1)mm(mm(m1)1)若若m m是任意整数,请观察是任意整数,请观察(gunch)(gunch)化简后的化简后的结果,你发现原式表示一个什么数?结果,你发现原式表示一个什么数? 解:解:2(m2(m1)m1)mm(mm(m1)(m1)(m1)m1)mm(mm(m1)1)2(m22(m2m mm2m2m)(m2m)(m2m mm2m2
30、m)m)8m3.8m3.原式原式( (2m)32m)3,表示,表示(biosh)3(biosh)3个个2m2m相乘相乘第五十七页,共109页。第第3讲讲 归类归类(u li)示例示例 (1) (1)对于整式的加、减、乘、除、乘方运算,要充分理解其运对于整式的加、减、乘、除、乘方运算,要充分理解其运算法则,注意运算顺序,正确应用乘法算法则,注意运算顺序,正确应用乘法(chngf)(chngf)公式以及整体和公式以及整体和分类等数学思想分类等数学思想 (2) (2)在应用乘法在应用乘法(chngf)(chngf)公式时,要充分理解乘法公式时,要充分理解乘法(chngf)(chngf)公式的结构特点
31、,分析是否符合乘法公式的结构特点,分析是否符合乘法(chngf)(chngf)公式的条件公式的条件第五十八页,共109页。 类型类型(lixng)(lixng)之三之三 因式分解因式分解 第第3讲讲 归类归类(u li)示例示例命题角度:命题角度:1因式分解的概念;因式分解的概念;2提取公因式法因式分解;提取公因式法因式分解;3运用运用(ynyng)公式法因式分解:公式法因式分解:(1)平方差公式;平方差公式;(2)完完全平方公式全平方公式 例例4 4 20122012无锡无锡 分解因式分解因式( (x x1)1)2 2 2(2(x x1)1)1 1的结果的结果是是( () )A A( (x
32、x1)(1)(x x2) B. 2) B. x x2 2C C( (x x1)1)2 2 D. ( D. (x x2)2)2 2D 解析解析 首先把首先把x x1 1看做一个整体,观察发现符合完全平方看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解公式,直接利用完全平方公式进行分解( (x x1)1)2 22(2(x x1)1)1 1( (x x1 11)1)2 2( (x x2)2)2 2. .第五十九页,共109页。 (1)因式分解时有公因式的要先提取公因式,再考虑是否应用公式法或其他(qt)方法继续分解 (2)提公因式时,若括号内合并的项有公因式应再次提取;注意符号的
33、变换yx(xy),(yx)2(xy)2. (3)应用公式法因式分解时,要牢记平方差公式和完全平方式及其特点 (4)因式分解要分解到每一个多项式不能再分解为止第第3讲讲 归类归类(u li)示例示例第六十页,共109页。 类型之四类型之四 整式运算整式运算(yn sun)与因式分解的应用与因式分解的应用 命题角度:命题角度:1. 1. 整式的有关规律性问题;整式的有关规律性问题;2. 2. 利用整式验证公式或等式;利用整式验证公式或等式;3. 3. 新定义运算;新定义运算;4. 4. 利用因式分解进行计算利用因式分解进行计算(j sun)(j sun)与化简;与化简;5. 5. 利用几何图形验证
34、因式分解公式利用几何图形验证因式分解公式第第3讲讲 归类归类(u li)示例示例例例5 5 20122012宁波宁波 用同样大小的黑色棋子按如图用同样大小的黑色棋子按如图31所所示的规律摆放:示的规律摆放:图图1图图1第六十一页,共109页。第第3讲讲 归类归类(u li)示例示例(1)(1)第第5 5个图形个图形(txng)(txng)有多少颗黑色棋子?有多少颗黑色棋子?(2)(2)第几个图形第几个图形(txng)(txng)有有20132013颗黑色棋子?请说明理由颗黑色棋子?请说明理由 解析解析 (1) (1)根据图中所给的黑色棋子根据图中所给的黑色棋子(qz)(qz)的颗数,找出其中的
35、规律,即可得出答案;的颗数,找出其中的规律,即可得出答案;(2)(2)根据根据(1)(1)所找出的规律,列出式子,即可求出答案所找出的规律,列出式子,即可求出答案解:解:(1)(1)第一个图需棋子第一个图需棋子(qz)6(qz)6颗,颗,第二个图需棋子第二个图需棋子(qz)9(qz)9颗,颗,第三个图需棋子第三个图需棋子(qz)12(qz)12颗,颗,第四个图需棋子第四个图需棋子(qz)15(qz)15颗,颗,第五个图需棋子第五个图需棋子(qz)18(qz)18颗,颗,第第n n个图需棋子个图需棋子(qz)3(n(qz)3(n1)1)颗颗答:第答:第5 5个图形有个图形有1818颗黑色棋子颗黑
36、色棋子(qz)(qz)(2)(2)设第设第n n个图形有个图形有20132013颗黑色棋子颗黑色棋子(qz)(qz),根据根据(1)(1)得得3(n3(n1)1)20132013,解得,解得n n670670,所以第所以第670670个图形有个图形有20132013颗黑色棋子颗黑色棋子(qz)(qz)第六十二页,共109页。 解决整式的规律性问题应充分发挥数形结合的作用,从分析图形的结构入手(rshu),分析图形结构的形成过程,从简单到复杂,进行归纳猜想,从而获得隐含的数学规律,并用代数式进行描述第第3讲讲 归类归类(u li)示例示例第六十三页,共109页。第第3讲讲 回归回归(hugu)教
37、材教材完全完全(wnqun)(wnqun)平方式大变身平方式大变身回归教材回归教材教材母题人教版八上教材母题人教版八上P157T7 P157T7 已知已知a ab b5 5,abab3 3,求,求a2a2b2b2的值的值( (提示提示(tsh)(tsh):利:利用公式用公式(a(ab)2b)2a2a22ab2abb2)b2)解:解:a ab b5 5,abab3 3,( (a ab b) )2 22525,即即a a2 22 2ababb b2 22525,a a2 2b b2 225252 2abab25252 23 319.19.第六十四页,共109页。第第3讲讲 回归回归(hugu)教材
38、教材 点析点析 完全平方公式的一些主要变形:完全平方公式的一些主要变形:(a(ab)2b)2(a(ab)2b)22(a22(a2b2)b2),(a(ab)2b)2(a(ab)2b)24ab4ab,(a(ab)2b)22ab2ab(a(ab)2b)22ab2ab,在四个量,在四个量(a(ab)2 b)2 、(a(ab)2b)2、ab ab 和和a2a2b2b2中,知道其中中,知道其中(qzhng)(qzhng)任意的两个量,就能求出任意的两个量,就能求出( (整体代换整体代换) )其其余的两个量余的两个量第六十五页,共109页。12012南昌南昌 已知已知(mn)28,(mn)22,则,则m2n
39、2()A10 B6 C5 D3 22010黄冈黄冈 已知已知ab1,ab2,则式子,则式子(sh zi) _. 第第3讲讲 回归回归(hugu)教材教材中考变式C 6 第六十六页,共109页。第第4讲讲分式分式(fnsh) 第六十七页,共109页。第第4讲讲 考点考点(ko din)聚焦聚焦考点聚焦考点聚焦考点考点1 1 分式分式(fnsh)(fnsh)的概念的概念 分分式式的的概概念念定义定义形如形如_(_(A A、B B是整式,且是整式,且B B中含中含有字母,且有字母,且B B0)0)的式子叫做分式的式子叫做分式有意义的有意义的条件条件分母不为分母不为0 0值为值为0 0的条件的条件分子
40、为分子为0 0,但分母不为,但分母不为0 0第六十八页,共109页。第第4讲讲 考点考点(ko din)聚焦聚焦考点考点2 2 分式分式(fnsh)(fnsh)的基本性质的基本性质 分子分子(fnz)分母分母M M 第六十九页,共109页。考点考点(ko din)3 (ko din)3 分式的运算分式的运算 第第4讲讲 考点考点(ko din)聚焦聚焦分式分式的加的加减减同分母分式同分母分式相加减相加减分母不变,把分子相加减,即分母不变,把分子相加减,即 _异分母分式异分母分式相加减相加减先通分,变为同分母的分式,然后相加减,先通分,变为同分母的分式,然后相加减,即即 _ 分式分式的乘的乘除除
41、乘法法则乘法法则分式乘分式,用分子的积做积的分子,分母分式乘分式,用分子的积做积的分子,分母的积做积的分母,即的积做积的分母,即 _除法法则除法法则分式除以分式,把除式的分子、分母颠倒位分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即置后,与被除式相乘,即 _ ( (b b0, 0, c c0, 0, d d0)0)第七十页,共109页。第第4讲讲 考点考点(ko din)聚焦聚焦分式分式的乘的乘方方 法则法则 分式乘方是把分子、分母各自乘方分式乘方是把分子、分母各自乘方 公式公式 _(_(n n为整数为整数) ) 分式分式的混的混合运合运算算 法则法则 在分式的混合运算中,应先算
42、乘方,再将在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行除法化为乘法,进行约分化简,最后进行加减运算,遇有括号,先算括号里面的加减运算,遇有括号,先算括号里面的 特别特别说明说明 (1)(1)实数的各种运算律也符合分式的运算实数的各种运算律也符合分式的运算(2)(2)分式运算的结果要化成最简分式分式运算的结果要化成最简分式 第七十一页,共109页。第第4讲讲 归类归类(u li)示例示例归类示例归类示例 类型之一分式的有关类型之一分式的有关(yugun)概念概念 命题角度命题角度(jiod)(jiod):1. 1. 分式的概念;分式的概念;2. 2. 使分式有使分式有
43、( (无无) )意义、值为意义、值为0(0(正或负正或负) )的条件的条件 例例1 1 (1 1) 20122012宜昌宜昌 若分式若分式 有意义,则有意义,则a a的取值范的取值范围是围是( () )A Aa a0 B0 Ba a1 C1 Caa1 D1 Daa 0 0(2) (2) 20122012温州温州 若代数式若代数式 的值为零,则的值为零,则x x_._.C C 3 第七十二页,共109页。第第4讲讲 归类归类(u li)示例示例 解析解析(ji x) (1)(ji x) (1)分式有意义,分式有意义,aa1010,aa1.1.第七十三页,共109页。第第4讲讲 归类归类(u li
44、)示例示例 (1)分式(fnsh)有意义的条件是分母不为零;分母为零时分式(fnsh)无意义 (2)分式(fnsh)的值为零的条件是:分式(fnsh)的分子为零,且分母不为零 (3)分式(fnsh)的值为正的条件是:分子与分母同号;分式(fnsh)的值为负的条件是:分子与分母异号分式(fnsh)的值为正(负)经常与不等式组结合考查第七十四页,共109页。 类型之二分式的基本性质类型之二分式的基本性质(xngzh)(xngzh)的运用的运用 命题角度:命题角度:1. 1. 整式的加减乘除运算整式的加减乘除运算(yn sun)(yn sun);2. 2. 乘法公式乘法公式 第第4讲讲 归类归类(u
45、 li)示例示例例例2 2 20122012义乌义乌 下列计算错误的是下列计算错误的是( () ) A 第七十五页,共109页。第第4讲讲 归类归类(u li)示例示例 (1)在应用分式基本性质进行变形时,要注意在应用分式基本性质进行变形时,要注意“都都”,“同一个同一个”,“不等于不等于0”这些字眼的意义,否则容易出现错误这些字眼的意义,否则容易出现错误 (2)在进行通分和约分时,如果在进行通分和约分时,如果(rgu)分式的分子或分式的分子或分母是多项式时,则先要将这些多项式进行因式分解分母是多项式时,则先要将这些多项式进行因式分解 第七十六页,共109页。 类型类型(lixng)(lixn
46、g)之三之三 分式的化简与求值分式的化简与求值 第第4讲讲 归类归类(u li)示例示例命题角度:命题角度:1. 分式分式(fnsh)的加减、乘除、乘方运算法则;的加减、乘除、乘方运算法则;2. 分式分式(fnsh)的混合运算及化简求值的混合运算及化简求值 例例3 3 20122012六盘水六盘水 先化简代数式先化简代数式 ,再,再从从2 2,2 2,0 0三个数中选一个恰当的数作为三个数中选一个恰当的数作为 a a 的值代入求值的值代入求值 第七十七页,共109页。第第4讲讲 归类归类(u li)示例示例第七十八页,共109页。 分式化简求值题的一般解题思路为:分式化简求值题的一般解题思路为
47、:(1)(1)利用因式分解、通利用因式分解、通分、约分等相关知识对原复杂的分式进行化简;分、约分等相关知识对原复杂的分式进行化简;(2)(2)选择合适的选择合适的字母取值代入化简后的式子计算得结果注意字母取值时一定字母取值代入化简后的式子计算得结果注意字母取值时一定要使原分式有意义要使原分式有意义(yy)(yy),而不是只看化简后的式子,而不是只看化简后的式子第第4讲讲 归类归类(u li)示例示例第七十九页,共109页。 类型类型(lixng)之四之四 分式的创新应用分式的创新应用 命题角度:命题角度:1. 1. 探究分式中的规律探究分式中的规律(gul)(gul)问题;问题;2. 2. 有
48、条件的分式化简有条件的分式化简 第第4讲讲 归类归类(u li)示例示例例例4 4 20122012凉山州凉山州 2011.5 第八十页,共109页。第第4讲讲 归类归类(u li)示例示例第八十一页,共109页。 此类问题一般是通过观察计算结果变化规律,猜想一般性的结论(jiln),再利用分式的性质及运算予以证明 第第4讲讲 归类归类(u li)示例示例第八十二页,共109页。第第4讲讲 回归回归(hugu)教材教材分式分式(fnsh)(fnsh)化简有高招化简有高招 回归教材回归教材教材母题教材母题(m t)(m t)人教版八下人教版八下P23T6 P23T6 计算计算第八十三页,共109
49、页。第第4讲讲 回归回归(hugu)教材教材第八十四页,共109页。第第4讲讲 回归回归(hugu)教材教材 点析点析 在进行分式的加、减、乘、除、乘方混在进行分式的加、减、乘、除、乘方混合运算时,要注意运算法则合运算时,要注意运算法则(fz)(fz)与运算顺序此类与运算顺序此类问题是中考的热点考题问题是中考的热点考题 第八十五页,共109页。2011南京南京(nn jn) 计算:计算: 第第4讲讲 回归回归(hugu)教材教材中考变式第八十六页,共109页。第第5讲讲数的开方数的开方(ki fng)及二次根式及二次根式 第八十七页,共109页。第第5讲讲 考点考点(ko din)聚焦聚焦考点
50、聚焦考点聚焦考点考点(ko din)1(ko din)1平方根、算术平方根与立方根平方根、算术平方根与立方根 数的数的开方开方平方平方根根一个数一个数x x的的_等于等于a a,那么,那么x x叫做叫做a a的平方根,记作的平方根,记作22算术算术平方平方根根一个正数一个正数x x的的_等于等于a a,则,则x x叫做叫做 a a 的算术平方根,记作的算术平方根,记作2 2,0 0的算术的算术平方根是平方根是0 0立方立方根根一个数一个数x x的的_等于等于a a,那么,那么x x 叫叫做做a a的立方根的立方根立方立方(lfng) (lfng) 平方平方 平方平方 第八十八页,共109页。第
51、第5讲讲 考点考点(ko din)聚焦聚焦考点考点(ko din)2 (ko din)2 二次根式的有关概念二次根式的有关概念 二次根二次根式式定义定义形如形如a(_)a(_)的式子叫做二的式子叫做二次根式次根式防错提醒防错提醒a a中的中的a a可以是数或式,但可以是数或式,但a a一定一定要大于或等于要大于或等于0 0最简二次根式最简二次根式同时满足下列两个条件的二次根同时满足下列两个条件的二次根式叫做最简二次根式:式叫做最简二次根式:(1)(1)被开方被开方数中不含能开得尽方的因数或因数中不含能开得尽方的因数或因式;式;(2)(2)被开方数不含分母被开方数不含分母a a00 第八十九页,
52、共109页。考点考点3 3 二次根式二次根式(gnsh)(gnsh)的性质的性质 第第5讲讲 考点考点(ko din)聚焦聚焦二次根二次根式的性式的性质质两个重要两个重要的性质的性质 ( )( )2 2 = =a a( (a a_)_) 积的算术积的算术平方根平方根 ababaab b (a_,b_) 商的算术商的算术平方根平方根 (a_,b_) 0 a a a a 0 0 0 0 第九十页,共109页。考点考点(ko din)4 (ko din)4 二次根式的运算二次根式的运算 第第5讲讲 考点考点(ko din)聚焦聚焦0 0 0 0 第九十一页,共109页。考点考点5 5 把分母把分母(
53、fnm)(fnm)中的根号化去中的根号化去 第第5讲讲 考点考点(ko din)聚焦聚焦常用形式及常用形式及方法方法第九十二页,共109页。第第5讲讲 归类归类(u li)示例示例归类示例归类示例 类型类型(lixng)之一求平方根、算术平方根与立方根之一求平方根、算术平方根与立方根 命题命题(mng t)(mng t)角度:角度:1. 1. 平方根、算术平方根与立方根的概念;平方根、算术平方根与立方根的概念;2. 2. 求一个数的平方根、算术平方根与立方根求一个数的平方根、算术平方根与立方根例例1 (1) 1 (1) 20122012雅安雅安 9 9的平方根是的平方根是( () )A A3
54、B3 B3 C3 C3 D3 D6 6(2)(2)20112011日照日照 ( (2)2)2 2的算术平方根是的算术平方根是( () )A A2 B. 2 B. 2 C2 C2 D.22 D.2C A 解析解析 9 9的平方根是的平方根是3 3,( (2)2)2 2的算术平方根是的算术平方根是2.2. 第九十三页,共109页。第第5讲讲 归类归类(u li)示例示例 (1)一个正数的平方根有两个,它们互为相反数;(2)平方根等于本身(bnshn)的数是0,算术平方根等于本身(bnshn)的数是1和0,立方根等于本身(bnshn)的数是1、1和0;(3)一个数的立方根与它同号;(4)对一个式子进
55、行开方运算时,要先将式子化简再进行开方运算第九十四页,共109页。 类型之二二次根式类型之二二次根式(gnsh)(gnsh)的有关概的有关概念念 命题角度:命题角度:1 1二次根式二次根式(gnsh)(gnsh)的概念;的概念;2 2最简二次根式最简二次根式(gnsh)(gnsh)的概念的概念第第5讲讲 归类归类(u li)示例示例例例2 2012德阳德阳使代数式使代数式 有意义的有意义的x的取值范围是的取值范围是()Ax0 BxCx0且且x D一切实数一切实数 C 第九十五页,共109页。第第5讲讲 归类归类(u li)示例示例 此类有意义的条件(tiojin)问题主要是根据:二次根式的被开方数大于或等于零;分式的分母不为零等列不等式组,转化为求不等式组的解集第九十六页,共109页。 类型之三类型之三 二次根式二次根式(gnsh)(gnsh)的化简与计算的化简与计算 第第5讲讲 归类归类(u li)示例示例命题角度:命题角度:1. 二次根式的性质:两个二次根式的性质:两个(lin )重要公式,积的算术平重要公式,积的算术平方根,商的算术平方根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电蒸锅市场需求与消费特点分析
- 2024年度城市轨道交通建设及运营合同
- 轴间隙测试仪市场发展预测和趋势分析
- 自行车用驮篮市场发展现状调查及供需格局分析预测报告
- 2024年度光学仪器玻璃制造与安装合同
- 健身用拉筋板市场发展现状调查及供需格局分析预测报告
- 血管加压药市场需求与消费特点分析
- 2024年度版权许可使用合同termsandconditions
- 2024年度便利店财务管理加盟合同
- 自行车车把市场需求与消费特点分析
- 2024年《建筑节能》理论考试题库(浓缩500题)
- 某监控中心管理制度全套
- 药物引起的过敏性休克的应急预案及护理流程
- 水塘租赁合同样本范本版
- 特种设备安全总监岗位职责
- DB3306T 070-2024产品碳足迹评价技术规范 棉面料
- 学习心理完整版本
- 低压电工安全技术培训课件
- (高清版)JTG 3363-2019 公路桥涵地基与基础设计规范
- 出口农产品的市场营销策略
- 2024地理中考复习-八年级下册知识点总结(打印版)
评论
0/150
提交评论