大学物理电场6_第1页
大学物理电场6_第2页
大学物理电场6_第3页
大学物理电场6_第4页
大学物理电场6_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、12.4 有电介质时的高斯定律有电介质时的高斯定律第十一章第十一章 导体与电介质中的静电场导体与电介质中的静电场作业:作业:11-20;11-22;11-25三、三、 电荷在外电场中的静电势能电荷在外电场中的静电势能2.5 静电场中的能量静电场中的能量 2.5.1 带电体系的静电能带电体系的静电能二、连续带电体的能量二、连续带电体的能量 例一,例二例一,例二2.5.2 电场的能量和能量密度电场的能量和能量密度一、一、 电容器储存的能量电容器储存的能量二、电场的能量密度二、电场的能量密度 例一,例二例一,例二*一、一、 点电荷系的相互作用能点电荷系的相互作用能2insideSSSqdSSdP在任

2、一曲面内极化电荷的负值等于极化强度的通量。在任一曲面内极化电荷的负值等于极化强度的通量。退极化场退极化场 电介质在外场中的性质相当于在真电介质在外场中的性质相当于在真空中有适当的束缚电荷体密度分布空中有适当的束缚电荷体密度分布在其内部。因此可用在其内部。因此可用 和和 的分布的分布来代替电介质产生的电场。来代替电介质产生的电场。在外电场在外电场 中,介质极化产生的束缚中,介质极化产生的束缚电荷,在其周围无论介质内部还是外电荷,在其周围无论介质内部还是外部都产生附加电场部都产生附加电场 称为退极化场。称为退极化场。任一点的总场强为:任一点的总场强为:E0E0EEE+QQ退极化场退极化场32.4

3、电介质的极化规律电介质的极化规律 实验表明实验表明: :EPe0e称为电极化率或极化率称为电极化率或极化率 polarizability在各向同性线性电介质中它是一个纯数。在各向同性线性电介质中它是一个纯数。EEP0E是自由电荷产生的电场是自由电荷产生的电场E极化电荷产生的退极化场极化电荷产生的退极化场 depolarization field0EEE是电介质中的总电场强度。是电介质中的总电场强度。0EPn n nPE4SSqqSdE)(100 SSqSdP 定义:定义:PEDdef0 自由电荷自由电荷束缚电荷束缚电荷根据介质极化和根据介质极化和真空中高斯定律真空中高斯定律SSSSdPqSdE

4、00011SSqSdPE00)(2.5 电位移矢量、有电介质时的高斯定律电位移矢量、有电介质时的高斯定律5PEDdef0VeSdVSdD 自由电荷自由电荷SSqSdPE00)( 通过任一闭合曲面的电位移通量,等于通过任一闭合曲面的电位移通量,等于该曲面内所包围的自由电荷的代数和。该曲面内所包围的自由电荷的代数和。物理意义物理意义电位移线起始于正自由电荷终止于负自由电荷。电位移线起始于正自由电荷终止于负自由电荷。与束缚电荷无关。与束缚电荷无关。电力线起始于正电荷终止于负电荷。电力线起始于正电荷终止于负电荷。包括自由电荷和与束缚电荷。包括自由电荷和与束缚电荷。6EEPEDe000 EDe0)1 (

5、 EEDr 00 称为称为电容率电容率permittivity 或或介电常量介电常量dielectric constant。r 称为相对电容率称为相对电容率或相对介电常量。或相对介电常量。退极化场 之间的关系:之间的关系:EDP、)1 (er 0r7解:导体内场强为零。解:导体内场强为零。0qSdDSRrrrqD 420 因为因为EDr0RrrrqEr 4200 0q 均匀地分布在球表面上,均匀地分布在球表面上,球外的场具有球对称性球外的场具有球对称性R0qr高斯面高斯面EPe0 |) 1( | |00EEPren 204) 11Rqr (例一:例一:一个金属球半径为一个金属球半径为R,带电量

6、,带电量q q0 0,放在均匀的,放在均匀的介电常数为介电常数为 电介质中。求任一点场强及界面处电介质中。求任一点场强及界面处 ?rrErqrqE 0200200)11(44 介质内表面(界面)处介质内表面(界面)处束缚电荷的场束缚电荷的场自由电荷的场自由电荷的场800ED rEE /0上例也说明当均匀电介质充满电场的全部空间时,上例也说明当均匀电介质充满电场的全部空间时,或当均匀电介质的表面正好是等势面时,有或当均匀电介质的表面正好是等势面时,有例二:平行板电容器充电后,极板例二:平行板电容器充电后,极板上面电荷密度上面电荷密度 ,将两板与电源断电以后,再插入将两板与电源断电以后,再插入 的

7、电介质后计算空隙中和的电介质后计算空隙中和电介质中的电介质中的mC/1077. 1608rPDE、+ 0 0因断电后插入介质,所以极板因断电后插入介质,所以极板上电荷面密度不变。上电荷面密度不变。EDr 09+ 0 0电位移线垂直与极板,电位移线垂直与极板,根据高斯定律根据高斯定律高斯面高斯面高斯面高斯面SSDDIII0)( IIIIIIISSDDIIII 0)( 0 IID0 IIID00 IIErIIIE 00EPe0 rrIIIeEP 0000)1(0)11( rIII 电位移线电位移线退极化场退极化场10几种电介质:几种电介质:e线性各向同性电介质,线性各向同性电介质, 是常量。是常量

8、。压电体压电体piezoelectricspiezoelectrics 有压电效应、电致伸缩有压电效应、电致伸缩 electrostrictionelectrostriction。铁电体铁电体 ferroelectrics ferroelectrics 和和 是非线性关系;是非线性关系;并具有电滞性(类似于磁滞性),如酒石酸钾并具有电滞性(类似于磁滞性),如酒石酸钾钠钠 、BaTiOBaTiO3 3 。PE永电体或驻极体永电体或驻极体,它们的极化强度并不随外场的它们的极化强度并不随外场的撤除而消失,与永磁体的性质类似,如石腊。撤除而消失,与永磁体的性质类似,如石腊。2.6 铁电体、永电体和压电

9、体铁电体、永电体和压电体11(1 1)介质分界面两侧的电场强度切向分量连续,)介质分界面两侧的电场强度切向分量连续,即介质分界面两侧的电场切向分量相等。即介质分界面两侧的电场切向分量相等。(2 2)介质分界面两侧的电位移矢量法向分量连续,)介质分界面两侧的电位移矢量法向分量连续,即介质分界面上有自由电荷时,介质分界面两侧的即介质分界面上有自由电荷时,介质分界面两侧的电位移矢量法向分量发生突变;当介质分界面上无电位移矢量法向分量发生突变;当介质分界面上无自由电荷时,介质分界面两侧的电位移矢量法向分自由电荷时,介质分界面两侧的电位移矢量法向分量相等量相等 。(3 3)介质分界面两侧的电势连续,即介

10、质分界面)介质分界面两侧的电势连续,即介质分界面两侧无限靠近的两点电势相等。两侧无限靠近的两点电势相等。2.7 静电场的边值关系静电场的边值关系12一、电荷系的相互作用能一、电荷系的相互作用能设有设有 n 个电荷组成的系统。个电荷组成的系统。将各电荷从现有位置彼此分将各电荷从现有位置彼此分开到无限远时,他们之间的开到无限远时,他们之间的静电力所做的功静电力所做的功定义为定义为电荷电荷系在原来状态的静电能系在原来状态的静电能。1q2q3qnq3 3 静电场中的能量静电场中的能量 3.1 带电体系的静电带电体系的静电能能131、 以两个点电荷系统为例:以两个点电荷系统为例: 2121iiiUqW1

11、2021124rqqW 21012214rqqW 1121UqW 2212UqW 1q2q12r21r2q1q将将 从从 的场中移到无穷远电场力做的功的场中移到无穷远电场力做的功2q1q将将 从从 的场中移到的场中移到无穷远电场力做的功无穷远电场力做的功drrqqAr 12212012124 drrqqAr 21221021214 1221WWW143、 n个点电荷系统的静电能:个点电荷系统的静电能: niiiUqW121)(21332211UqUqUqW 2 、三个点电荷系统的静电能:、三个点电荷系统的静电能:3q12r31r23r1q2q233213311221444rqqrqqrqqWo

12、oo )44()44()44(21322311323321121331221rqrqqrqrqqrqrqqoooooo 15二、连续带电体的静电能:二、连续带电体的静电能:qUdqW21VedVUW 21SedSUW 21LedlUW 21e为电荷的体密度。为电荷的体密度。e为电荷的面密度。为电荷的面密度。e为电荷的线密度。为电荷的线密度。 niiiUqW121rdqo16例一:例一: 均匀带电球面,半径为均匀带电球面,半径为R,总电量为,总电量为Q,求这一带电系统的静电能。求这一带电系统的静电能。RQ带电球面是一个等势体,以无穷远为势能零点,带电球面是一个等势体,以无穷远为势能零点,其电势为

13、:其电势为:RQUo 4 所以,此电荷系的静电能为:所以,此电荷系的静电能为:RQdqRQUdqWoo 8421212 也称它是均匀带也称它是均匀带电球面系统的电球面系统的自能自能。例二:均匀带电球体,半径为例二:均匀带电球体,半径为R,电荷体密度为,电荷体密度为 ,求这一带电球体的静电能。求这一带电球体的静电能。RRrrrEo 31 已知场强分布:已知场强分布:17RrrrREo 3232 由电势定义得由电势定义得 RRrdrEdrEU21RrrRUo )3(622 RrdrrRdrrRoRro 2333 RRrrrEo 31 场强分布:场强分布:18均匀带电球体系统的自能:均匀带电球体系统

14、的自能:52022221544)3(621RdrrrRoRo 20222sin)3(62121ooRodddrrrRUdqW rddrdrdV sin球坐标的体元球坐标的体元zryxRrrRUo )3(622 19UqW0 2、电偶极子在均匀外电场中、电偶极子在均匀外电场中 的静电势能:的静电势能:EPqlEqUqUWe cos上式表明:上式表明:取向相反时。电势能最高。取向相反时。电势能最高。1、点电荷、点电荷 在外电场中的静电势能在外电场中的静电势能oqqElq20rZeU04 上式以无限远为电势的零点。上式以无限远为电势的零点。rZeeUW024 因为电子所在处的电势为:因为电子所在处的

15、电势为:三、电子在原子核的电场中的电势能:三、电子在原子核的电场中的电势能:21电荷是能量的携带着。电荷是能量的携带着。这里我们从电容器具有能量,这里我们从电容器具有能量,静电系统具有能量做形式上静电系统具有能量做形式上的推演来说明电场的能量。的推演来说明电场的能量。两种观点:两种观点:电场是能量的携带着电场是能量的携带着近距观点。近距观点。这在静电场中难以有令人信服的理由,这在静电场中难以有令人信服的理由,在电磁波的传播中,如通讯工程中能在电磁波的传播中,如通讯工程中能充分说明场才是能量的携带者。充分说明场才是能量的携带者。RIC电容器充放电的过程是能电容器充放电的过程是能量从电源到用电器,

16、(如量从电源到用电器,(如灯炮)上消耗的过程。灯炮)上消耗的过程。3.2 电场的能量和能量密度电场的能量和能量密度一、一、 电容器储存的能量电容器储存的能量22dq电容器放电过程中电容器放电过程中,电量电量 在电场力的作用下,在电场力的作用下,从正极板到负极板,这微小过程中电场力作功为:从正极板到负极板,这微小过程中电场力作功为:dquuudqdA )(0dq因为因为 表示极板上的电量随放电而减少表示极板上的电量随放电而减少CQdqCqudqdAAQ2021 所以储存在电容器中的能量为:所以储存在电容器中的能量为:QUCUCQW2121222 电容器储存的能量电容器储存的能量RIC23SdES

17、dSQSdQCQWrrrr202000222)(222 电容器储存的能量与场量的关系。电容器储存的能量与场量的关系。结果讨论:结果讨论:VEDW21电容器所具有的能量与极板间电场电容器所具有的能量与极板间电场 和和 有关,有关, 和和 是极板间每一点电场大小的是极板间每一点电场大小的物理量,所以能量与电场存在的空间有关,物理量,所以能量与电场存在的空间有关,电场携带了能量。电场携带了能量。EDED电容器所具有的能量还与极板间体积成正比,电容器所具有的能量还与极板间体积成正比,于是可定义能量的体密度,它虽然是从电容于是可定义能量的体密度,它虽然是从电容器间有均匀场而来但有其普遍性。器间有均匀场而

18、来但有其普遍性。dSCr 0rE 00 24dVEdVwWre220 EDESdWwre212120 电场中单位体电场中单位体积内的能量积内的能量 rddrdrdVsinzryx球坐标的体元球坐标的体元20002sindddrrdVR二、电场的能量密度二、电场的能量密度25例一、真空中一均匀带电球体,半径为例一、真空中一均匀带电球体,半径为R,体电荷密度为体电荷密度为 ,试利用电场能量公式试利用电场能量公式,求此带求此带电球体系统的静电能。电球体系统的静电能。RRrrrE 301 RrrrRE 32032 dVEdVwWe220 RRdrrEdrrE2220022104242 球内球内球外空间球外空间26 RRdrrrRdrrr222030022004)3(24)3 (2 0520521841854 RR dVEdVwWe220 052154 R 与前面求自能结果一致。与前面求自能结果一致。27例二:一平板电容器面积为例二:一平板电容器面积为S S,间距,间距d d,用电源充电,用电源充电后,两极板分别带电为后,两极板分别带电为+ +q q和和- -q q,断开电源,再把断开电源,再把两极板拉至两极板拉至2 2d d ,试求:试求:(1)(1)外力克服电力所做的功。外力克服电力所做的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论