污水处理厂毕业设计_第1页
污水处理厂毕业设计_第2页
污水处理厂毕业设计_第3页
免费预览已结束,剩余55页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、、污水处理工艺选择与可行性分析1、污水厂的设计规模近期污水量为2X104 m3/d,远期污水量为4X 104 m3/d,其中生活污水和工 业废水所占比例约为6:4。污水厂主要处理构筑物拟分为二组, 这样既可满足近 期处理水量要求,又留有空地以二期扩建之用。2、进出水水质单位:mg/LCODBODSSNH NTNTP进水50018042030605出水6020208201由于进水不但含有BOD,还含有大量的N, P所以不仅要求去除BOD还应去除水中的N, P使其达到排放标准3、处理程度的计算1. BOD5的去除率180 20100%88.89%1802 .COD的去除率500 60100% 88

2、%5003.SS的去除率42020100%95.24%4204.总氮的去除率60 20100%66.67%605.总磷的去除率5 1100% 80%54、本工程采用生物脱氮除磷工艺的可行性BOD N: P的比值是影响生物脱氮除磷的重要因素,氮和磷的去除率随着BOD5/N 和 BOD5/P 比值的增加而增加理论上, BOD5/N>2.86 才能有效地进行脱氮,实际运行资料表明, BOD5/N>3 时才能使反硝化正常进行。在 BODN= 45时,氮的去除率大于50%磷的去除 率也可达 60%左右。本工程 BOD5/N=3, 可以满足生物脱氮的要求。对于生物除磷工艺,要求 BODP=33

3、100。本工程BODP等于36,能满足 生物脱氮除磷工艺对碳源的要求,由此本工艺采用生物脱氮除磷的工艺。在脱氮方面,由脱氮除磷的机理可知,有机负荷是影响硝化反应的重要因 素之一,在碳化与硝化合并处理工艺中,硝化菌所占的比例很小,约5%。一般认为处理系统的BOD负荷小于0.15kg BOD5/kgMLSS.d寸,处理系统的硝化反应 才能正常进行。根据所给定的污水水量及水质,参考目前国外城市污水处理厂的设计及运 转经验,对于生活污水占比例较大的城市污水而言,以下几种方法最具代表性: A/O法、AB法、生物滤池、循环式活性污泥法(改良 SBR、氧化沟法。5、工艺比较及确定城市污水处理厂的方案,既要考

4、虑去除 BOD5 又要适当去除 N, P 故可采用 SBF或氧化沟法,或A7O法。A A2/O 法A2/O 工艺即缺氧 /厌氧/好氧活性污泥法 , A2/O 法处理城市污水的特点:运 行费用较传统活性污泥法低,曝气池池容小,需气量少,具有脱氮除磷功能, BOD和SS去除率高,出水水质较好,工作稳定可靠,有较成熟的设计、施工及 运行管理经验,产泥量较传统活性污泥法少;污泥脱水性能较好;无需设初沉 池;对水质和水温度化有一定适应能力;另外,从节省能耗的角度看,A2/O 可以充分利用硝化液中的硝态氧来氧化 BOD回收了部分硝化反应的需氧量,反 硝化反应所产生的碱度可以部分补偿硝化反应消耗的碱度,因此

5、对含氮浓度不 高的城市污水可以不另外加碱来调节 PH。优点: 该工艺为最简单的同步脱氮除磷工艺 ,总的水力停留时间,总产占地面积少于其它的工艺 。 在厌氧的好氧交替运行条件下, 丝状菌得不到大量增殖, 无污泥膨胀 之虑, SVI 值一般均小于 100,有利于泥水分离。 污泥中含磷浓度高,具有很高的肥效。 运行中勿需投药,两个A段只用轻缓搅拌,以不溶解氧浓度,运行费 低。 缺氧、厌氧和好氧三个分区严格分开,有利于不同微生物菌群的繁殖 生长,脱氮除磷效果好。缺点: 循环量一般以2Q为限,不宜太高,否则增加运行费用。 对沉淀池要保持一定的浓度的溶解氧,减少停留时间,防止产生厌氧 状态和污泥释放磷的现

6、象出现, 但溶解 浓度也不宜过高。以防止循环混合液对 缺氧反应器的干扰。B SBR法工艺流程:污水一级处理曝气池处理水 工作原理:1)流入工序:废水注入,注满后进行反应,方式有单纯注水,曝气,缓速 搅拌三种,2)曝气反应工序:当污水注满后即开始曝气操作,这是最重要的工序,根 据污水处理的目的,除P脱N应进行相应的处理工作。3)沉淀工艺:使混合液泥水分离,相当于二沉池,4)排放工序:排除曝气沉淀后产生的上清液,作为处理水排放,一直到最 低水位,在反应器残留一部分活性污泥作为种泥。5)待机工序:工处理水排放后,反应器处于停滞状态等待一个周期特点: 大多数情况下,无设置调节池的心要。 SVI值较低,

7、易于沉淀,一般情况下不会产生污泥膨胀。 通过对运行方式的调节,进行除磷脱氮反应。 自动化程度较高。 得当时,处理效果优于连续式。 单方投资较少。 占地规模大,处理水量较小。C 氧化沟工作流程:污水T中格栅T提升泵房T细格栅T沉砂池T氧化沟T二沉池T接触池T 处理水排放工作原理:氧化沟一般呈环形沟渠状,污水在沟渠作环形流动,利用独特的水力流动 特点,在沟渠转弯处设曝气装置,在曝气池上方为厌氧池,下方则为好氧段, 从而产生富氧区和缺氧区,可以进行硝化和反硝化作用,取得脱氮的效应,同 时氧化沟法污泥龄较长,可以存活世代时间较长的微生物进行特别的反应,如 除磷脱氮。工作特点: 在液态上,介于完全混合与

8、推流之间,有利于活性污泥的适于生物凝聚 作用。 对水量水温的变化有较强的适应性,处理水量较大。 污泥龄较长,一般长达15 30天,至U以存活时间较长的微生物,如果运 行得当,可进行除磷脱氮反应。 污泥产量低,且多已达到稳定 自动化程度较高,使于管理。 占地面积较大,运行费用低。 脱氮效果还可以进一步提高,因为脱氮效果的好坏很大一部分决定于循 环,要提高脱氮效果势必要增加循环量,而氧化沟的循环量从政论上说可以不 受限制,因而具有更大的脱氮能力。 氧化沟法自问世以来,应用普遍,技术资料丰富 。D 曝气- 沉淀 一体化反应池(一体化氧化沟又称合建式氧化沟)一体化氧化沟集曝气,沉淀,泥水分离和污泥回流

9、功能为一体,无需建造单独得二沉池。基本运行方式大体分六个阶段(包括两个过程) 。阶段A:污水通过配水闸门进入第一沟,沟出水堰能自动调节向上关闭, 沟转刷以低转速运转,仅维持沟污泥悬浮状态下环流,所供氧量不足,此系统 处于缺氧状态,反硝化菌将上阶段产生的硝态氮还原成氮气逸出。在这过程中, 原生污水作为碳源进入第一沟,污泥污水混合液环流后进入第二沟。第二沟转 刷在整个阶段均以高速运行,污水污泥混合液在沟保持恒定环流,转刷所供氧 量足以氧化有机物并使氨氮转化成硝态氮,处理后的污水与活性污泥一起进入 第三沟。第三沟沟转刷处于闲置状态,此时,第三沟仅用作沉淀池,使泥水分 离,处理后的出水通过已降低的出水

10、堰从第三沟排出。阶段B:污水入流从第一沟调入第二沟,第一沟的转刷开始高速运转。开 始,沟处于缺氧状态,随着供氧量增加,将逐步成为富氧状态。第二沟处理过 的污水与活性污泥一起进入第三沟,第三沟仍作为沉淀池,沉淀后的污水通过 第三沟出水堰排出。阶段C:第一沟转刷停止运转,开始泥水分离,需要设过渡段,约一小时, 至该阶段末,分离过程结束。在 C阶段,入流污水仍然进入第二沟,处理后污 水仍然通过第三沟出水堰排出。阶段D:污水入流从第二沟调至第三沟,第一沟出水堰开,第三沟出水堰 关停止出水。 同时, 第三沟转刷开始以低转速运转, 污水污泥一起流入第二沟,在第二沟曝气后再流入第一沟。此时,第一沟作为沉淀池

11、。阶段D与阶段A相类似,所不同的是反硝化作用发生在第三沟,处理后的污水通过第一沟已降低 的出水堰排出。阶段E:污水入流从第三沟转向第二沟,第三沟转刷开始高速运转,以保 证该段末在沟为硝化阶段,第一沟作为沉淀池,处理后污水通过该沟出水堰排 出。阶段E与阶段B类似,所不同的是两个外沟功能相反。阶段F:该阶段基本与C阶段相同,第三沟的转刷停止运转,开始泥水分 离,入流污水仍然进入第二沟,处理后的污水经第一沟出水堰排出。其主要特点: 工艺流程短,构筑物和设备少,不设初沉池,调节池和单独的二沉池, 污泥自动回流,投资省,能耗低,占地少,管理简便。 处理效果稳定可靠,其BOD和SS去除率均在90%-95

12、%或更高。COD勺 去除率也在85%以上,并且硝化和脱氮作用明显。 产生得剩余污泥量少,性质稳定,易脱水,不会带来二次污染。 造价低,建造快,设备事故率低,运行管理费用少。 固液分离效率比一般二沉池高,池容小,能使整个系统再较大得流量和 浓度围稳定运行。 污泥回流及时,减少污泥膨胀的可能。缺点:构造尚待进一步完善,运行也待进一步完善。综上所述,任何一种方法,都能达到除磷脱氮的效果,且出水水质良好, 但相对而言,SBR法一次性投资较少,占地面积较大,且后期运行费用高于氧化 沟,厌氧池+氧化沟虽然一次性投资较大,但占地面积也不少,耗电量低,运行 费用较低,产污泥量大,但构筑物多且复杂。一体化反映池

13、科技含量高,投资 省,但其工艺在国还不完善。综合考虑本工程的建设规模、进水特性、处理要 求、运行费用和维护管理等情况,经技术经济比较、分析,确定采用倒置A7O法生物处理工艺。6、工艺流程的选择、污水厂设计计算书设计技术参数1、污水处理厂服务围及建设规模:本工程所在地为某市新区,辖区基础设施齐全,具备承载大规模现代化工业发展的能力。服务围北起渭河,南至西潼高速路;东起渭清路,西至零河(见 附图)。近期污水量为2X104mVd,远期污水量为4X 104mVd,其中生活污水和 工业废水所占比例约为6:4。2、污水处理厂进水水质:根据该污水处理厂工程可行性研究报告和环境影响报告书的批复,并参考 类似工

14、程,确定污水处理厂进厂水质指标如下:COD: 500mg/lBOD 5: 180mg/lSS :420mg/l TN : 60mg/lTP:5mg/l T > 13oCNH+-N: 30mg/L3、污水处理厂出水水质:根据国家现行城镇污水处理厂污染物排放标准(GB18918-2002中一级B类标准,该污水处理厂工程可行性研究报告及环境影响报告书的批复,考 虑到接纳水体的环境容量确定出厂水质指标为:COD 60mg/lBOD 5 < 20mg/l SS < 20mg/l NH4+-N: <8mg/LTN< 20mg/LT-P < 1.0 mg/L pH : 6

15、 9粪大肠菌群数104 个/l城市自然状况1、城市性质与规模规划面积18km2,,人口 4.5万人。2、地形、地貌、地质、地震该高新区的地形南高北低,拟建场地距受纳水体渭河仅约350m地貌属渭 岸一级阶地,场地平坦。绝对咼程在 348.30m349.05m之间。场地区地下水位 埋深12m左右,据区域水文地质资料,场地区地下水位年变幅小于1m多年水位变幅3m左右。可不考虑地下水对基础的腐蚀性。 地基土对混凝土结构及钢筋 混凝土结构中的钢筋均无腐蚀性。拟建场地为非自重湿陷性场地,地基湿陷等 级为I级(轻微),按中国地震烈度区划图划分,基本地震烈度为八度。3、排水现状该区域为新规划建设开发区,根据总

16、体规划,将在开发区的主次干道上分 别敷设雨水和污水管道,形成分流制雨、污水排水系统,在污水厂建设同时, 排水管网将同时建设。排水系统的输送能力能保证污水处理厂2万m/d的工程规模。4、气象工程场地属温暖带半湿润大陆性季风气候,具有冬长夏短,春秋温凉典型 特征。四季分明,春季和冬季干旱多风,夏季炎热,降雨集中,秋季天气晴朗, 日照充足。气温:年平均气温:13.5 C,极端最低气温:-15.8 C,极端最高气温:42.2 C, 年平均相对湿度:7085%降雨:年平均降水量:577.4mm日最大降水量:835.6mm日最小降水量: 301.0mm 年平均蒸发量:15241638mm风:冬季平均风速:

17、1.8m/s,夏季平均风速:2.2m/s,主导风向:东、东 北冻土深度:最大冻土深度:36cm污水处理厂厂区概况该污水处理厂为新建污水厂,规划用地面积68亩。污水厂进水口位于厂区 西南角,进水污水管管底标高343.60m。污水经处理后出水靠重力流直接排入规划用地北侧的渭河,该河流符合地表水环境质量标准中的川类标准。河水 最咼水位343.40m。水量:近期:2X 104m3/d=0.231 m3/s=231L/s远期:4 X 104m3/d=0.463 m3/s=463 L/s1、污水处理构筑物设计计算1.1、进水控制井计算1、( 1)进水管按远期计算,根据流量从给水排水管网系统查:设计流量q(

18、L/s)在458.72 545.92时,管径取1000mm;粗糙系数为nm=0.014;最小坡 度 1=0.28%(2)出水管:设计流量按近期取,q(L/s)在225.50285.39时,管径取600mm;粗糙系数为nm=0.014;最小坡度为1=1.26%。2、尺寸计算:平面草图如下:控制井中事故水量,即水力停留时间取 60s贝U事故管管底标高为:60X 0.463=27.78 mi27.78十 23.9十 2.2=3.2378m 取 3.2m则:343.60+3.2=346.80m进水管管底标高为343.60m,事故管管径为1000mm,最小坡度为0.61%o厂 距渭河350m;所以降落量

19、为:350X 0.61% =0.2135m;则入河口处事故管管底 标高为:346.80- 0.2135=346.59m剖面草图如下:1.2、粗格栅的计算设计中选择二组格栅,N=2组,每组格栅单独设置,每组格栅的设计流量为近期水的一半,即0.1155 m3/s.1、格栅的间隙数Qi、sinnbhv式中n格栅的间隙数(个)Q1设计流量(m3/s)a格栅倾角(°)b格栅栅条间隙(m)h格栅栅前水深(m)v格栅过栅流速(m/s)设计中取 h=0.4m,v=0.8m/s,b=0.02m, a=60°取17个0.1155 . sin60°人n16.79 个0.02 0.4 0

20、.82、格栅宽度B=s( n-1)+b n式中B格栅槽宽度(m)S每根格栅条的宽度(m)设计中取S=0.01mB=0.01(17-1)+0.02X 17=0.5m3、进水渠道渐宽部分的长度B B1L1L2 tan 1式中L1 进水渠道渐宽部分的长度(m)B1进水明渠宽度(m)a 1渐宽处角度(°), 一般采用10°30。设计中取 B1=0.4m, a 1=20°L14、出水渠道渐窄部分的长度0.5 0.42ta n200 0.15mB B12 tan 2式中L2出水渠道渐窄部分的长度(m)a 2渐窄处角度(0),取20°L20.510.42ta n200

21、 0.15m5、通过格栅的水头损失hik (* sinb 2g式中hi水头损失(m)B 格栅条的阻力系数,查表B =2.42k 格栅受污物堵塞时的水头损失增大系数,一般取 k=3h13 2.42 (0i0l)43 °isin60°0.0815m0.02 2g&栅后明渠的总高度H=h+hi+h2式中H 栅后明渠的总高度(m)h2 明渠超咼(m),般米用0.30.5m设计中取h2=0.3mH=0.4+0.0815+0.3 0.78m7、格栅槽总长度L=L 1+L2+0.5+1.0+H 1/ tan a式中L 格栅槽总长度(m)H1格栅明渠的深度(m)L=0.15+0.1

22、5+0.5+1.0+0.7/ta n60° 2.2m8、每日栅渣量86400QWj1000式中 W每日栅渣量(m3/d)W1每日每103m3污水的栅渣量(m3/103m3污水),一般采用0.04 0.06m/103m3 污水设计中取 Wi=0.05 m3/103m3污水86400 0.231 0.053W=0.998 > 0.2 m3/d1000应采用机械除渣及皮带输送机或无轴输送机输送栅渣,采用机械栅渣打包机将栅渣打包,汽车运走。9、进水与出水渠道城市污水通过DN900伽的管道送入进水渠道,设计中取进水渠道宽度Bi=0.5m,进水水深h=0.4m,出水渠道B2= Bi=0.5

23、m,出水水深h=0.4m10、校核(1)栅前流速:V1则过栅流速为:V2 QA0.11550.1360.849m/s符合过栅流速在 0.61.0的实际计算过水断面为:0.4 X 0.5=0.2m2则栅前流速为:V1Q0.11550.5775m/s符合栅前流速在0.4A0.20.8m/s的设计要求。(2)过栅流速:v2实际计算过水断面为:A17 0.020.40.136 m设计要求11、计算草图如下: 1 1 /1111XJa _X1进 水1.3、污水提升泵房1、水泵的选择设计水量为20000 m3/d,选择用三台潜污泵(2用1备),则单台流量为Qi=20000十 2=10000 m3/d=41

24、6.67 m3/h所需扬程为10.57 m (见水力计算和高程布置)选择250WS-450B型污水泵,参数如下:流量m3/h扬程H/m转速/ -1 /r min轴功率p/kW电机功率p/kW效率/%质量kg排出口径血4201173518.022797502002、集水池(1)容积 按一台泵最大流量时6min的出流量设计,则集水池的有效容4203hi6 42 m60(2)面积 取有效水深H为2m则面积F为F=V - H=42 - 2=21m2集水池长度取5m,则宽度为4.2m,集水池平面尺寸为L X B=5X 4.2 保护水深取1m,则实际水深为3m3、泵位及安装污水泵直接置于集水池,经核算集水

25、池面积大于污水泵的安装要求。污水 泵检修采用移动吊架。4、泵房草图如下:1.4、与曝气沉砂池合建的细格栅设计中选择二组格栅,即 N=2组,每组格栅与沉砂池合建,则每组格栅的设计流量为近期水量的一半,即 0.1155 m3/s.1、格栅的间隙数Q< sinnbhv式中n格栅的间隙数(个)Q1设计流量(m3/s)a格栅倾角(°)b格栅栅条间隙(m)h格栅栅前水深(m)v格栅过栅流速(m/s)设计中取 h=0.4m,v=1.0m/s,b=0.01m, a=60°26.87个工程中取27个0.1155.si n60°n 0.01 0.4 1.02、格栅宽度B=s(

26、n-1)+bn式中B格栅槽宽度(m)S每根格栅条的宽度(m)设计中取S=0.01mB=0.01(27-1)+0.01 X 27=0.53m3、通过格栅的水头损失h1k (?)43 二sin2g式中h1水头损失(m)B 格栅条的阻力系数,查表B =2.42k 格栅受污物堵塞时的水头损失增大系数,一般取 k=30 014, 120h13 2.42 () 3 sin 60°0.32 m0.01 2g4、栅后明渠的总高度H=h+h1+h2式中H 栅后明渠的总高度(m)h2 明渠超咼(m), 般米用0.30.5m设计中取h2=0.3mH=0.4+0.32+0.3=1.02m5、格栅槽总长度L=

27、0.5+1.0+H” tan a式中L 格栅槽总长度(m)Hi格栅明渠的深度(m)L=0.5+1.0+0.7/ta n60° 1.9m&每日栅渣量86400QW1W11000式中 W每日栅渣量(m3/d)Wi每日每103m3污水的栅渣量(m3/103m3污水),一般采用0.04 0.06m/103m3 污水设计中取 W1 =0.05 m3/103m3污水86400 0.231 0.053W=0.998 > 0.2 m3/d1000应采用机械除渣及皮带输送机或无轴输送机输送栅渣,采用机械栅渣打包 机将栅渣打包,汽车运走。7、进水与出水渠道城市污水通过提升泵房送入进水渠道,

28、格栅的进水渠道与格栅槽相连,格栅与沉砂池合建一起,格栅出水直接进入沉砂池,进水渠道宽度B1= B=0.53m,渠道水深h=0.4m&校核(1)栅前流速:V1实际计算过水断面:A h B 0.4 0.53 0.212 m2则栅前流速为:V1 A需55 0'545m/S符合栅前流速在0.40.8m/s的设计要求(2)过栅流速:v2实际计算过水断面为:A 27 0.01 0.40.108 m2则过栅流速为:v2Q 0.1155 1m/s符合过栅流速在0.61.0的设计A 0.108要求。9、计算草图如下:1.5、曝气沉砂池设计中选择二组曝气沉砂池,N=2组,分别与格栅连接,每组沉砂池

29、设计流量为 0.1155 m3/s。1、沉砂池有效容积V=60Qt式中V 沉砂池有效容积(m3)Q设计流量(m3/s)t停留时间(min),一般采用1 3min-I设计中取t=3minV=60 X 3X 0.1155=20.79 m?2、水流过水断面面积QVi式中A 水流过水断面面积(川)Vi水平流速(m/s), 般采用 0.06 0.12 m/s设计中取Vi=0.06m/s0.1155A 1.93 m20.063、沉砂池宽度AB h2式中B 沉砂池宽度(m)h2沉砂池有效水深(m),般采用23m1.93、=0.965m为施工方便取1m2设计中取h2=2mB4、沉砂池长度20.791.93 1

30、0.77m式中L 沉砂池长度(m)L5、每小时所需空气量q 3600Qd式中q每小时所需空气量(m3/h)d 1 m3污水所需空气量(m3/m3污水),一般采用0.1 0.2 m3/ m3污水.设计中取d=0.2 m3/ m3污水q=3600X 0.1155X 0.2=83.16 m3/hQ?X ?T8?64006、沉砂室所需容积106V式中Q污水流量(m3/s)X 城市污水沉砂量(m3/ 106m3污水),一般采用30 m3/ 106m3污水T清除沉砂的时间(d), 般取1 2d设计中取T=1d,X= 30m3/ 106m3污水°231 30 J 00 0.6 m31067、每个沉

31、砂斗容积V。式中V。一每个沉砂斗容积m3n沉砂斗数量(个) 设计中取n=2个&沉砂斗上口宽度Vo 06 =0.3m322haaa1tg式中a沉砂斗上口宽度(m)h3一沉砂斗高度(m)a 沉砂斗壁与水面的倾角(°), 一般采用圆形沉砂池a =55。,矩形沉砂池 a =60°a1沉砂斗底宽度(m),般采用0.4 0.5m设计中取 h3 =0.4m, a =60°, a 1=0.5m9、沉砂斗有效容积2 0.4 a tg60°0.5 0.96m'h3 2V0 ?(aaa1ai)式中V。'一沉砂斗有效容积(m3)V。普(0.962 0.9

32、63格栅出水通过DN900mm的管道送入沉砂池的进水渠道,然后向两0.50.52)" 0.22 m310、侧配水进入沉砂池,进水渠道的水流速度式中vi进水渠道的水流速度(m/s)Bi进水渠道宽度(m)H1进水渠道水深(m)设计中取 B1=1.1m, H1=0.3m0.1155V1=0.35m/s1.1 0.311、出水装置出水采用沉砂池末端薄壁出水堰跌落出水,出水堰可以保证沉砂池水位标高Q1恒定,堰上水头H1式中H1堰上水头(m)Q1沉砂池设计流量(m3/s)m流量系数,一般采用0.4 0.5b2堰宽(m),等于沉砂池的宽度设计中取m=0.4, b2=1mH1 (0.1155f 0.

33、162m0.4 1 V2 9.8出水堰后自由跌落0.1m,出水流入出水槽,出水槽宽度 B2=0.5m,出水槽 水深h2=0.25m,水流流速v2=0.8m/s。采用出水管道在出水槽中部与出水槽连接, 出水管道采用钢管,钢管 DN=500mm,管流速V2=0.9m/s。12、排砂装置采用吸砂泵排砂,排砂泵设置在沉砂斗,借助空气提升将沉砂排出沉砂池,吸砂泵管径DN=150mm13、曝气沉砂池剖面图如下12C01.6、平流式初沉池设计中选择两组平流沉淀池,N=2组,每组平流沉淀池设计流量为 0.1155 m3/s,从沉砂池流出来的污水进入配水井,经过配水井分配流量后流入平流沉 淀池。Q 3600式中

34、A 沉淀池表面积(卅)Q设计流量(m3/s)q/表面负荷m3/ (m2 h),一般采用 1.53.0 m3/ (m2 h) 设计中取 q / =2 m3/( m2 h)A2、沉淀部分有效水深0.1155 36002=207.9 m2h2 q t式中h2沉淀部分有效水深(m)t沉淀时间(h) ,一设计中取t=1h3、沉淀部分有效容积V4、沉淀池长度式中L 沉淀池长度(m)v设计流量时的水平流速设计中取v=5mm/s般采用1.0 2.0hh22X 1=2mV' Q?t 36000.1155 1 3600 =415.8 m3L v?t 3.6(mm/s),般采用 v< 5mm/sL 5

35、 1 3.6=18mA式中L 沉淀池宽度(m)207.9 =ii.55m186沉淀池格数ni式中ni沉淀池格数(个)b沉淀池分格的每格宽度(m)设计中取b=2.5m11 55ni5 =4.62 个(取 5 个)2.57、校核长宽比及长深比长宽比L/b=18/2.5=7.2>4(符合长宽比大于4的要求,避免池水流产生短 流现象)。长深比L/h2=18/2=9> 8(符合长深比812之间的要求)8、污泥部分所需容积(1)按设计人口计算SNTV1000 ?n式中V 污泥部分所需容积(m3)S每人每日污泥量L/(人d),一般采用0.3 0.8 L/(人 d)T两次清除污泥间隔时间(d),

36、一般采用重力排泥时,T=1 2d,采用机械 排泥时,T=0.05 0.2dN 设计人口(人)n沉淀池组数T=1d设计中取S=0.6 L/(人 d),采用重力排泥时,清除污泥间隔时间0.6 45000 11000 2(2)按去除水中悬浮物计算V Q(G C2)86400T1006K2 (100 P0)n 10 式中Q平均污水流量(m3/s)Ci进水悬浮物浓度(mg/L)C2出水悬浮物浓度(mg/L), 一般采用沉淀效率n =40%60%K2生活污水量总变化系数 r污泥容量(t/ m3),约为1 p。一污泥含水率(%)设计中取 T=1d, p0=97%,n =50%, C2= : 100%-50%

37、X Ci=0.5 Ci。231(42° 0.5 86400 1 100 69.85 m3(10097)2 1069、每格沉淀池污泥部分所需容积V/m式中V'每格沉淀池污泥部分所需容积(m3)'3V69.85/5=13.97m310、污泥斗容积0.5m,污泥斗倾角大于60。aaj污泥斗设在沉淀池的进水端,采用重力排泥,排泥管伸入污泥斗底部,为 防止污泥斗底部积泥,污泥斗底部尺寸一般小于1 2 2 V1h4 (aa13式中V1 污泥斗容积(m3)a 沉淀池污泥斗上口边长(m)a 1沉淀池污泥斗下口边长(m),般采用0.40.5mh4 污泥斗高度(m)设计中取 a=4m,

38、h4=3m, a i=0.5mV1 - 3 (42 0.52 4 0.5)=18.25 m3> 13.97 m3311、沉淀池总高度Hh| h2 h3 h4式中H 沉淀池总高度(m)h1沉淀池超咼(m),般米用0.3 0.5mh3缓冲层高度(m),般米用0.3mh4污泥部分高度(m),般采用污泥斗高度与池底坡度i=1%的高度之和设计中取 h4=3+0.01 (18-4) =3.14m, hi=0.3m, h3=0.3mH 0.3 2 0.3 3.14=5.74m12、进水配水井沉淀池分为2组,每组分为5格,每组沉淀池进水端设进水配水井,污水在配水井平均分配,然后流进每组沉淀池。配水井中心

39、管直径式中D /配水井中心管直径(m)V2配水井中心管上升流速(m/s),般采用V2 > 0.6 m/s设计中取 V2=0.7m/s配水井直径j4 0.231 小D J0.648m0.7f丨 4QjD3/D?V3式中D3 配水井直径(m)V3配水井污水流速(m/s), 般取v=0.20.4m/s设计中取v3=0.3m/sD3- 4 0.2310.6482 1.18m0.313、进水渠道沉淀池分为两组,每组沉淀池进水端设进水渠道,配水井接出的DN500进水管从进水渠道中部汇入,污水沿进水渠道向两侧流动,通过潜孔进入配水渠道,然由穿孔花墙流入沉淀池。QV1B1H1式中v1 进水渠道水流速度(

40、m/s),般米用v1 > 0.4m/sB1 进水渠道宽度(m)H1 进水渠道水深(m), B1 : H1 一般采用0.5 2.0设计中取 B1 =0.5 m, H1 =0.40.1155v1=0.5775m/s> 0.4m/s0.5 0.414、进水穿孔花墙进水采用配水渠道通过穿孔花墙进水,配水渠道宽0.4m,有效水深0.5m,穿孔花墙的开孔总面积为过水断面面积的6%20%,则过孔流速为v2QB2h2n1式中v2穿孔花墙过孔流速(m/s),般采用0.05 0.15m/sB2孔洞的宽度(m)h2孔洞的高度(m)n1孔洞数量(个)设计中取 B2=0.2m,h2=0.2m,n1=8 个V

41、20.11550.2 0.2 8 5 0.072m/s15、出水堰沉淀池出水经过出水堰跌落进入出水渠道, 然后汇入出水管道排走。出水堰采用矩形薄壁堰,堰后自由跌落水头0.1 0.15m,堰上水深H为Q m0bH 2gH式中m。一流量系数,一般采用0.45b出水堰宽度(m)H出水堰顶水深(m)0.1155/50.45 2.5 H 2gHH=0.028m出水堰后自由跌落采用0.1m,贝U出水堰水头损失为0.12816、出水渠道沉淀池出水端设出水渠道,出水管与出水渠道连接,将污水送至集水井。QV3B3H3式中V3出水渠道水流速度(m/s),般采用V3>0.4m/sB3出水渠道宽度(m)H3出水

42、渠道水深(m), B3 : H3一般采用0.5 2.0设计中取 B3=0.5m, H3=0.4m0.1155V3=0.5775m/s> 0.4m/s0.5 0.4出水管道采用钢管,管径DN=800mm,管流速v=0.6m/s,水力坡降i=2.37%°17、进水挡板、出水挡板沉淀池设进水挡板和出水挡板,进水挡板距进水穿孔花墙0.5m,挡板高出水面0.3m,深入水下0.6m。出水挡板距出水堰0.5m,挡板高出水面0.3m,深入水下0.4m。在出水挡板处设一个浮渣收集装置,用来收集拦截的浮渣。18、排泥管沉淀池采用重力排泥,排泥管直径DN=250mm,排泥时间t4=20min,排泥管

43、流速 v4=0.8m/s排泥管伸入污泥斗底部。排泥管上端高出水面 0.3m,便于清通和排气。19、刮泥装置沉淀池采用行车式刮泥机,刮泥机设于池顶,刮板深入池底,刮泥机行走 时将污泥推入污泥斗。20、平流沉淀池剖面图如下1.7、A2/O生物反应池设计参数1、水力停留时间A2/O工艺的水力停留时间t 一般采用6 8h,设计中取t=8h200(4000mg/L,设计中取 Xv=3000mg/L2、曝气池活性污泥浓度 曝气池活性污泥浓度Xv 一般采用5SVI3、回流污泥浓度Xr式中Xr 回流污泥浓度(mg/L)SVI 污泥指数,一般采用100r系数,一般采用r=1.2Xr1061001.212000m

44、g/L4、污泥回流比XvRFR?Xr式中R污泥回流比Xr 回流污泥浓度mg/L),Xr fXr=0.75X 12000=9000mg/L3000R90001 R解得:R=0.55、TN去除率宁100%式中e TN去除率(%)51 进水TN浓度(mg/L)52 出水TN浓度(mg/L)设计中取S2=20mg/Le 60 20 100% =66.67%60&回流倍数R内1 e式中R内一回流倍数R内 .=2.0003,设计中取R内为200%10.6667平面尺寸计算1、总有效容积V Q?t式中V总有效容积(m3)Q进水流量(m3/d),按平均流量计t水力停留时间(d)设计中取Q=20000

45、m3/dV 20000 8/ 24 6666.67 m33,则每段的水力停缺氧、厌氧、好氧各段水力停留时间的比值为1: 1:留时间分别为:ti=1.6h缺氧池水力停留时间t2=1.6h厌氧池水力停留时间t3=4.8h好氧池水力停留时间2、平面尺寸 曝气池总面积h式中A曝气池总面积(川)h曝气池有效水深(m)设计中取h=3.2mA每组曝气池面积式中A 每座曝气池面积(卅N曝气池个数(个)6666.673.2Ai2083.332083.33 m21041.67 m每组曝气池共设5廊道,第1廊道为缺氧段,第2廊道为厌氧段,后3个 廊道为好氧段,每个廊道宽取5m,则廊道长Ai bn式中L曝气池每个廊道

46、长(m)b每个廊道宽度(m)n廊道数设计中取b=5m,n=51041.675 5 41.67mA2/O池的平面布置图如下:回流污泥沉池硝化液回流回流污泥进 水 管进出水系统1、曝气池的进水设计初沉池的来水通过DN900mm管道送入A2/0池首端的进水渠道。在进水渠道,水流分别流向两侧,从缺氧段进入,进水渠道宽0.8m,渠道水深0.6m,则渠道的最大水流速度为ViQsNb1h1式中v1 渠道的最大水流速度(m/s)bi进水渠道宽度(m)h1进水渠道有效宽度(m)设计中取 b1=0.8m,h1=0.6mV10.2310.8 0.6 0.24m/s反应池采用潜孔进水,孔口面积QsN ?V2式中F每座

47、反应池所需孔口面积(卅)V2孔口流速(m/s),般采用 0.2 1.5m/s设计中取v2=0.2m/sL0.231 c LFL 2F=0.5775 m22 0.2设每个孔口尺寸为0.4X 0.4m,贝U孔口数为式中n每座曝气池所需孔口数(个)f每个孔口的面积(m)0.57750.4 0.43.6工程中取4个孔口布置图如下:进水渠道底2、曝气池的出水设计A2/0池的出水采用矩形薄壁堰,跌落水头,堰上水头(mb:2g)3式中H 堰上水头(m)Q每座反应池出水量(m3/s),指污水最大流量(0.231 m3/s)与回流污泥 量、回流量之和(0.231 x 250%m3/s)m流量系数,一般采用0.4

48、 0.5b堰宽(m);与反应池宽度相等设计中取m=0.4,b=5m0.231 0.231 250% |H ()30.128m,设计中取 0.13m2 0.4 5 <2 9.8A2/O反应池的最大出水流量为(0.231+0.231 x 250% =0.8085 m3/s,出水管管径采用DN1500mm,送往二沉池,管流速为 0.8 m/s。其他管道设计1、污泥回流管在本设计中,污泥回流比为50%,从二沉池回流过来的污泥通过两根DN400mm的回流管道分别进入首端的缺氧池和厌氧池,管流速为0.85m/s。2、硝化液回流管硝化液回流比为200%,从好氧池出水至缺氧段首端,硝化液回流管道管径为

49、DN1000mm,管流速为 0.9m/s。剩余污泥量W aQ 平 Sr bVXv LrQ 平 50%式中W剩余污泥量(kg /d)a 污泥产率系数,一般采用0.50.7b污泥自身氧化系数(d-1),般采用0.05 0.1Q平一平均日污水流量(m3/d)Lr 反应池去除的 SS浓度(kg / m3), Lr =420-20=400mg/L=0.4kg/ m3Sr 反应池去除的 BOD5浓度(kg / m3), Sr =180-20=160 mg/L=0.16kg/ m3 设计中取a =0.6,b=0.08W 0.6 20000 0.16 0.08 6666.67 3 0.4 20000 50%=

50、1920-1600.0008+4000=4319.992" 4320 kg/d1.8、曝气系统为了维持曝气池的污泥具有较高的活性,需要向曝气池曝气充氧。目前, 常用的曝气设备分为鼓风曝气和机械曝气两大类,在活性污泥法中,应用鼓风 曝气的较多。下面以传统活性污泥法为例,较少鼓风曝气系统的设计过程。需氧量的计算1、平时需氧量:O2 aQSr bVXV式中02混合液需氧量(kg02/d);a 活性污泥微生物每代IkgBOD所需的氧气kg数,对于生活污水,a 值一般采用0.420.53之间;Q污水的平均流量(m3/d);Sr 被降解的BOD浓度(g/L);b 每1kg活性污泥每天自身氧化所需

51、要的氧气 kg数,一般采用0.1880.11 ;Xv 挥发性总悬浮固体浓度(g/L)。设计中取 a =0.5, b =0.15, Xv=2500mg/LO20.5 20000134.998 2010000.15 6666.67250010003649.9812kg / d 152.083kg / h供气量微孔曝气器的选型:活性污泥法曝气的主要作用为充氧、搅拌和混合。充氧的目的是为活性污 泥微生物提供所需的溶解氧,以保证微生物代过程的需氧量。鼓风曝气常采用 微孔曝气器作为充氧扩散装置。微孔曝气器一般分为橡胶膜微孔曝气器、高密 度聚乙烯复盘形微孔曝气器和刚玉微孔曝气器等三种。本设计选用橡胶膜中的球

52、冠形,该曝气器有省宜兴市文峰环保设备在原膜 片式微孔曝气器的基础上,进行专项研制开发的新型曝气装置。曝气器整体结 构科学管理,工艺先进、设计新颖。微孔曝气器及支托盘呈独特的球冠型结构, 具有优异的防堵及防水体倒流的性能。较平板膜片式微孔曝气器使用寿命长, 单位面积充氧效率更高,是一种较为理想的高效充氧装置。技术性能参数型 号规格/mm水 深/适用工作 空气量/m3/h 个服务面 积/m3/ 个氧利用 率充氧能力/kgO2/h充氧动 力效率/kgO2/曝 气 器mh阻 力 损 失 /PaBZQW?192X8 0?215X22 040.8 30.35-0.624-31%43200布置、安装和调试:球

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论