版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、电梯监控抗干扰技术原理与要点1. 综述监控工程中,电梯监控由于应用环境复杂,视频干扰问题,是常见的工程中难题,若不能很好解决,监控图像在电梯工作时,会产生诸如横纹、斜纹、网纹、尖刺纹等严重的干扰,使工程质量达不到预期要求甚至系统无法交付使用。当前系统集成商在电梯监控中往往忽略干扰问题,只是在工程施工中干扰出现时,才被动的解决。这样既影响工程正常工期,又会使投资建设方对系统整体性能和质量产生疑问,给后期维护和工程款项的支付造成困难;另外解决问题所用设备(如抗干扰器),也很难重新申请款项。所以建议系统集成商在系统方案设计时,对电梯监控的干扰问题就予以考虑,将视频抗干扰器等设备计入工程设备项;选择合
2、适的传输方式和传输线缆;制定合理的施工方案,将隐患消弥于未然,使工程高质高效的完成,为企业赢得良好的信誉。本文旨在论述电梯监控的特点及干扰产生的机理,使系统集成商在工程设计和施工中有的放矢,以技术手段解决干扰难题。2. 干扰产生机理分析干扰产生有三个要素:l 干扰源l 对干扰信号敏感的接收电路(或电子系统)l 干扰源到接收电路(或电子系统)的耦合通道1) 干扰源电梯电机为高压、大功率设备(相对于视频系统),其启停、加/减速、运行过程中会产生大量的干扰信号,且现在电梯大多使用变频电机,作为干扰源其干扰信号从工作频率到该频率高次谐波分布很广、频谱很宽、功率较强,而该干扰信号频谱范围可能覆盖视频信号
3、的频率区或高频段。在视频传输中,由于电梯内还有很多其它控制、动力(照明、风扇)、通信等电缆,各种电缆都会产生电磁辐射,而这些电缆与视频电缆平行走线,且长度较长,易对视频信号造成干扰。外部干扰源为高电压小电流时,主要为电场干扰;干扰源为低电压大电流时,主要为磁场干扰。电梯监控环境,电场、磁场干扰并存,且较严重。在干扰分析时,近场(干扰源与被干扰系统间距离干扰源波长的1/6可把电场和磁场分别处理;远场应按电磁场组合来分析。当电缆中的介质不与导体保持接触时,介质由于摩擦可以带电,称之为摩擦电效应。这往往由于电缆机械弯曲而引起,这种电缆的带电即成为噪声源。若传输电缆间有接头,若接头处连接不可靠,会产生
4、接触噪声。接触噪声正比于直流电流的大小,功率密度正比于传输信号频率的倒数(1/f),为低频噪声。这主要由于电缆接头处虚焊或接头长期裸露于空气中,接点氧化造成。当传输线在磁场内运动,线的两端即会产生感应电压,若一个工作导线在这种磁场中运动,导线上就会产生噪声,噪声大小取决于线缆的环路面积、移动速度和磁场频率,视频电缆因其同轴性环路面积较小(理想同轴电缆,环路面积等于零,无噪声信号。但实际电缆会有一定偏差,会有环路面积,一般较小),感应的噪声信号较小,但若磁场较强,感应产生的噪声信号对视频之类的宽带低电平信号仍可能产生较大的影响。由于电梯的动力系统及其他设备会产生较强的杂散磁场,监控传输线缆(电源
5、及视频信号线)又随着电梯上下同步运动,会产生这种干扰源,尤其当视频传输线缆屏蔽层前后端接地时,对低频磁场其环路面积会非常大,线路上感应的噪声信号会很强,将对视频信号产生严重干扰。当视频系统前端设备和后端设备都接地,且地线与交流电源地相同,因交流电源地之间会有较大的电位差,作为干扰源会使视频图像产生严重的工频干扰,具体表现为图像中出现一条横线,当视频信号场频与电源同步时,此横线静止不动;当二者不同步时,此横线将以电源频率与视频信号场频之差上下移动。2) 视频系统(接收器)视频系统包括前端(信息采集)、传输系统、后端(信息处理)部分,前端设备摄像机将采集的图像信息转化为标准的视频信号输出,该视频信
6、号为宽带(106MHz)小信号(12Vpp),信噪比较低,对干扰噪声比较敏感。由于电梯环境中各种干扰源和耦合通道的存在,若不采取有效措施,会对视频系统会产生的干扰,根据干扰信号频率的不同,视频图像表现为横纹、斜纹、网纹、尖刺状纹干扰。尤其在楼层高时,传输线路较长,线路的衰减使得信噪比进一步降低,干扰会更加严重。3) 干扰波的耦合干扰源所产生的电磁干扰波,通过耦合使视频信号产生相应的干扰噪声。与电梯监控相关的噪声耦合方式有以下几种: 传导耦合传输导线经过具有噪声的环境中,即拾取噪声并传送到电子系统设备中造成干扰。电梯监控中的传导耦合干扰,主要为干扰噪声经电源、视频传输线路传至系统。电源噪声将使被
7、供电的摄像机输出的视频信号被干扰,因视频源被干扰,即使在传输中加抗干扰设备亦无法消除;视频信号在传输线路上被干扰,将直接影响视频图像。 经公共阻抗耦合当两个系统电路的电流经一个公共阻抗时,一个系统电路的电流在该公共阻抗上形成的电压影响到另一个系统电路中,此即为公共阻抗耦合。公共阻抗可以是电阻、电容、电感。该耦合一般发生在两个系统电路共地或共电源时。 电场(电容性)耦合当干扰源产生的干扰波是以电压形式出现时,干扰源与工作系统(被干扰系统)之间就存在电场耦合。干扰电压经二者间的杂散电容耦合到工作系统电路。干扰电压产生于工作系统与地之间且正比于干扰源的电压和频率、被干扰系统的输入阻抗、耦合电容。对于
8、监控系统工作环境,干扰源电压和频率无法改变,视频系统的输入阻抗固定(75),仅可通过减少耦合电容降低干扰。减少耦合电容可通过改变传输线缆的方向、屏蔽或使传输导线远离其他产生干扰的线缆方式实现。 磁场(互感)耦合当干扰源产生的干扰波以电流形式出现时,干扰源的电流产生的磁场对工作系统(被干扰系统)的作用可等效为互感耦合。仅可通过减少互感降低干扰。互感耦合产生的干扰电压与工作系统电路相串连且正比于干扰源电流、频率和二者之间的互感。对于监控系统工作环境,干扰源电流和频率无法改变,仅可通过减少互感来降低干扰。减少互感可通过将干扰源线缆两根导线绞合,利用绞合线上的电流方向相反将磁场相互抵消;使传输线缆尽量
9、远离干扰源或视频系统线缆避开干扰场的垂直方向;减少工作系统回路面积等方式实现。 辐射电磁场感应辐射的电场和磁场会造成噪声耦合,所有电子设备包括导线在内,当有电荷运动时都会辐射电磁场。干扰的感应电压正比于电磁场强度。电子设备传输线缆具有天线效应,即能够辐射干扰波或接收干扰波。当干扰源线缆长度接近其干扰信号的1/2波长时,干扰辐射效率最高,当工作系统(被干扰系统)的传输线缆长度接近干扰信号的1/2时,干扰耦合效率最高,此时若干扰信号功率较大就会对工作系统产生严重的干扰。电梯动力系统工作时作其干扰信号从工作频率到该频率高次谐波分布很广,功率亦较强,干扰信号会通过各类传输电缆辐射较强的干扰波,而视频系
10、统的电源和信号线像天线一样接收这类干扰信号,从而对视频系统造成干扰。3. 抗干扰措施根据干扰产生的三个要素,可从三个方面抑制干扰信号:l 抑制干扰源l 消除干扰信号的耦合l 在工作系统中抑制干扰在实际的监控系统中,干扰信号往往由其他系统或设备产生,监控系统设计和施工人员无法或无权改进,这种情况抑制干扰源措施在此不加论述,仅从可为的方面论述抗干扰的措施。1) 传输线缆选择视频电缆在电梯中随着电梯的上下运行,电缆总有一段受重力作用要弯曲变形,使电缆各层之间纵向受力不均或相反方向,在电梯反复运动中会造成电缆层之间的相对滑动,会产生摩擦电效应成为噪声源,同时也会拉伸屏蔽层,影响抗干扰效能。所以在选择电
11、缆时应选择各层间的粘合力强的电缆。供电电缆选用RVVS绞线,最好为屏蔽线,屏蔽层在前端接地,以达到对电场和磁场干扰良好的抑制效果。因为传输线缆在电梯中随着电梯的上下运动,收重力作用线缆会产生拉伸形变,使线路的阻抗特性发生变化,降低信号传输信噪比;同时影响较高频率的电场干扰屏蔽,且屏蔽层电流的均匀性变差,对磁场的屏蔽效果将大为降低。这种情况在高层电梯时尤其如此。所以选择传输线缆应满足抗拉强度,,推荐使用自承式扁平复合电梯专用电缆,该电缆将视频电缆、电源线、数据线和钢绞线复合成一根扁平的带状电缆,整条电缆的拉力由钢绞线来承受,抗拉强度大大提高,从而减少线缆拉伸形变。现在有些电梯出厂时直接配备这种电
12、缆作为随行电缆。2) 线缆布局视频电缆其中一部分与电梯随行运动,如前干扰源论述,这部分电缆的运动会产生干扰,所以应使随行电缆尽量短,条件允许时可将视频电缆出电梯井端设在电梯在井中部,再从其它通道引回主控室。这时井内随行视频电缆长度最短,大约只有井深的一半多一点,引入的干扰也最小。随行运动部分的视频电缆与电梯内其他随行电缆都是与视频电缆并行且近距离捆扎,具有良好干扰耦合通道。所以捆扎前,应尽可能了解其他随行电缆的结构和分布情况,尽量争取使视频电缆远离电流大、电压高、频率高的其他电缆,因为此时干扰源(其他电缆)为近场干扰,干扰源电磁场强度按距离平方衰减。若实际工程不允许视频电缆从电梯中间出线,须从
13、电梯井的顶部或底部走出。这种情况下,有一半电缆是固定延伸连接,不运动。这部分电缆铺设时应远离电梯本身随行电缆;且电缆穿金属管或走金属槽,金属管槽接地,以屏蔽干扰对这部分电缆的影响。从电梯井出线端到监控中心的电缆,应走金属管或走金属槽且在出线端处接地,以屏蔽沿途环境干扰对这部分电缆的影响。尽量远离其他动力线缆,尤其当在视频传输线缆电梯出线端途径电梯机房,更应使电缆尽可能远离电梯动力设备。3) 视频系统前端供电及供电线路视频系统前端(摄像机等设备)供电最好从主控室集中提供,尽可能不在电梯轿厢处直接取电。从抗干扰角度考虑应采用交流供电(一般为AC24V),配置电源适配器为摄像机供电。电源适配器尽量选
14、择线性电源(变压器型),电源适配器应选用纹波小的优质电源,并尽量靠近摄像机以使电源输出线最短,防止公共阻抗干扰。若环境干扰太大,供电线路可穿套磁环或缠绕磁环、接共模扼流圈等方式进行高频滤波;可定制初、次级隔离型变压器的电源适配器,电源屏蔽体引线与电源输出的地相连,以消除变压器初次级分布电容造成的高频干扰耦合。若无法集中供电,可选择从电梯轿箱中照明电中取电,不使用动力电。同前可采用供电线路穿套磁环或缠绕磁环、接共模扼流圈、使用初、次级隔离型变压器的电源适配器措施抑制干扰。首先判断是否是电源干扰的方法:找一块蓄电池,直接给摄像机供电,若干扰排除则证明是电源干扰,不能排除则证明是其他原因造成的干扰(
15、也可能是摄像机本身问题)。注意当电源将干扰引入摄像机时,因视频源被干扰,即使采用抗干扰设备(视频抗干扰器)也无法减轻视频图像干扰的现状。这点也可用于检测是否电源干扰的方法。若判断为电源干扰,首先检测供电电源输入电压是否降低(可能是前端供电功率不够或传输线路衰减组成),电压降低可能使电源工作不正常,使输出电压不稳,纹波很大,本身即为一干扰源。4) 视频接头线缆接头尽量少,线缆连接处应使用BNC连接器,BNC接头与电缆芯线务必焊接牢靠,电缆屏蔽网均布包裹于BNC接头外壳圆周,且压(焊)接牢固,无接触不良。否则将使信号衰减增加,降低信噪比;产生接触噪声;大大降低电场干扰的屏蔽效果。5) 断绝地环路安
16、装时要特别注意摄像机金属外壳、BNC头的外壳、同轴电缆的屏蔽网等视频信号的“地”和电梯轿箱、导轨间的绝缘,以免前后端双端接地形成地环路。否则在低频磁场干扰使会使磁场感应的环路面积非常大,耦合很大的干扰信号;如果前后端地之间存在电位差,会引入新的干扰源。当环境中同时存在较大的高频(>1MHz)磁干扰时,可将摄像机地串接一小电容(如0.01u)与电梯轿箱相连。 6) 使用抗干扰器如果视频干扰是由传输中噪声耦合造成,使用视频抗干扰器是最有效的方法。视频抗干扰器原理是提高视频信号幅值,彻底改变视频信号低电平小信号易被干扰的特性,提高信噪比(也有采用高频调制的移频方式实现,在此不加论述)。视频抗干
17、扰器有三个指标:一为信号幅值,幅值越高,抗干扰性越强。但放大器的放大倍数(增益)与带宽恒定,放大倍数大,带宽就小,而视频信号为宽带小信号,要求信号大必须使放大倍数很大,但这又可能使的信号带宽减小,使视频信号失真;同时由于视频系统为低阻抗,信号过大会使得功率消耗太大,以致于损坏器件或热保护使设备不能工作。所以设计放大器时一定要兼顾放大倍数、带宽和输出功率的要求,这是一个难点。二为视频信号的均衡,因为在传输时,线缆对信号的衰减不均衡,高频衰减大、低频衰减小,对视频信号高频影响图像细节和颜色。若放大器仅采用线性放大(对高低频采用同一放大倍数),将会使得图像清晰度降低、颜色变淡,对于较远距离的传输更加
18、明显。所以放大器设计应根据线路衰减特性,使高频增益大、低频增益小,此即为信号均衡技术,因设备应用时要兼顾远近距离的传输,均衡需可调节,设计难道大,市场上大部分此类产品无此功能。三为设备屏蔽性,因抗干扰器为电子设备,在强干扰环境工作,本身也需具备屏蔽干扰的功能,为防止外界高低频干扰信号侵入,所以其外壳应采用全封闭金属结构。SYSTEK240采用独特设计,具有极高的传输信噪比,并综合应用共模抑制技术、屏蔽外壳结构等增强抗干扰能力;具有视频信号均衡功能,可根据电缆传输特性,对视频传输的衰减和频率失真进行补偿,并采用预加重技术,使视频信号高频抗干扰性更强,传输后不降低图像清晰度和颜色,图像效果优异,且
19、可大大延长传输距离(可达1000米)。同时具有防雷功能。特别适合强干扰环境的监控。4. 采用RVVS电缆传输视频,提高抗干扰能力因为在电梯井内视频传输距离较短(一般在200米以内),可采用RVVS双绞型电缆传输视频,且因RVVS双绞型电缆比较柔软且为每芯多铜丝,随着电梯运动弯曲时不易折断,使用寿命会更长。但RVVS电缆因分布电容比较大,信号带宽不够,对视频信号高频衰减大,使传输的图像质量不佳;另因视频信号为非平衡信号,对电场屏蔽作用很小,直接传输易受到电场干扰。所以需配备视频双绞线传输器,将单端信号转化为平衡信号传输,同时在视频信号传输前对高频预加重处理,在接收端均衡调节,恢复高质量图像。1) 利用RVVS双绞型电缆传输视频提高抗干扰能力的机
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论