![初中数学几何的动点问题专题练习-附答案版_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-6/2/fab56a35-731b-45c2-a158-8ff4ca433a9d/fab56a35-731b-45c2-a158-8ff4ca433a9d1.gif)
![初中数学几何的动点问题专题练习-附答案版_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-6/2/fab56a35-731b-45c2-a158-8ff4ca433a9d/fab56a35-731b-45c2-a158-8ff4ca433a9d2.gif)
![初中数学几何的动点问题专题练习-附答案版_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-6/2/fab56a35-731b-45c2-a158-8ff4ca433a9d/fab56a35-731b-45c2-a158-8ff4ca433a9d3.gif)
![初中数学几何的动点问题专题练习-附答案版_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-6/2/fab56a35-731b-45c2-a158-8ff4ca433a9d/fab56a35-731b-45c2-a158-8ff4ca433a9d4.gif)
![初中数学几何的动点问题专题练习-附答案版_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-6/2/fab56a35-731b-45c2-a158-8ff4ca433a9d/fab56a35-731b-45c2-a158-8ff4ca433a9d5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、动点问题专题训练1、如图,已知中,厘米,厘米,点为的中点(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动AQCDBP若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?(2)若点Q以中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?xAOQPBy2、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止点沿线段运动,速度为每秒1个单位长度,点沿路线运动(1
2、)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标ACBPQED图165、在RtABC中,C=90°,AC = 3,AB = 5点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止设点P、Q运动的时间是t秒(t0)(1)当t = 2时,A
3、P = ,点Q到AC的距离是 ;(2)在点P从C向A运动的过程中,求APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值若不能,请说明理由;(4)当DE经过点C 时,请直接写出t的值 OECBDAlOCBA(备用图)6如图,在中,点是的中点,过点的直线从与重合的位置开始,绕点作逆时针旋转,交边于点过点作交直线于点,设直线的旋转角为(1)当 度时,四边形是等腰梯形,此时的长为 ;当 度时,四边形是直角梯形,此时的长为 ;(2)当时,判断四边形是否为菱形,并说明理由ADCBMN7如图,在梯形中,动点从点出
4、发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动设运动的时间为秒(1)求的长(2)当时,求的值(3)试探究:为何值时,为等腰三角形10数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点,且EF交正方形外角的平行线CF于点F,求证:AE=EF经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小
5、颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;ADFCGEB图1ADFCGEB图2ADFCGEB图3 (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由11已知一个直角三角形纸片,其中如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边交于点,与边交于点xyBOA()若折叠后使点与点重合,求点的坐标;xyBOA()若折叠后点落在边上的点为,设,试写出关于的函数解析式,并确定的取值范围;()若折叠后点落在边上的点为,且使,求此时点的坐标 xyBO
6、A12图(1)ABCDEFMN如图(1),将正方形纸片折叠,使点落在边上一点(不与点,重合),压平后得到折痕当时,求的值方法指导:为了求得的值,可先求、的长,不妨设:=2类比归纳在图(1)中,若则的值等于 ;若则的值等于 ;若(为整数),则的值等于 (用含的式子表示)联系拓广图(2)NABCDEFM 如图(2),将矩形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕设则的值等于 (用含的式子表示) 12.如图所示,在直角梯形ABCD中,AD/BC,A90°,AB12,BC21,AD=16。动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线
7、段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动。设运动的时间为t(秒)。(1)设DPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,四边形PCDQ是平行四边形?(3)分别求出出当t为何值时, PDPQ, DQPQ ?1.解:(1)秒,厘米,厘米,点为的中点,厘米又厘米,厘米,又,(4分), ,又,则,点,点运动的时间秒,厘米/秒(7分)(2)设经过秒后点与点第一次相遇,由题意,得,解得秒点共运动了厘米,点、点在边上相遇,经过秒点与点第一次在边上相遇(12分)2.解(1)A(8,0)B(0,6)1分(2)点由到的时间是(秒)点的速度是(单位
8、/秒)1分当在线段上运动(或0)时,1分当在线段上运动(或)时,,如图,作于点,由,得,1分1分(自变量取值范围写对给1分,否则不给分)(3)1分3分5.解:(1)1,; (2)作QFAC于点F,如图3, AQ = CP= t,由AQFABC, 得 ACBPQED图4,即(3)能 当DEQB时,如图4 DEPQ,PQQB,四边形QBED是直角梯形 此时AQP=90°ACBPQED图5AC(E)BPQD图6GAC(E)BPQD图7G由APQ ABC,得,即 解得 如图5,当PQBC时,DEBC,四边形QBED是直角梯形此时APQ =90°由AQP ABC,
9、得 ,即 解得(4)或点P由C向A运动,DE经过点C连接QC,作QGBC于点G,如图6,由,得,解得点P由A向C运动,DE经过点C,如图7,】6.解(1)30,1;60,1.5; 4分 (2)当=900时,四边形EDBC是菱形. =ACB=900,BC/ED. CE/AB, 四边形EDBC是平行四边形. 6分 在RtABC中,ACB=900,B=600,BC=2,A=300.AB=4,AC=2.AO= . 8分在RtAOD中,A=300,AD=2.BD=2.BD=BC.又四边形EDBC是平行四边形,四边形EDBC是菱形 10分7.解:(1)如图,过、分别作于,于,则四边形是矩形1分在中,2分在
10、中,由勾股定理得,3分(图)ADCBKH(图)ADCBGMN(2)如图,过作交于点,则四边形是平行四边形4分由题意知,当、运动到秒时,又5分即解得,6分(3)分三种情况讨论:当时,如图,即7分ADCBMN(图)(图)ADCBMNHE当时,如图,过作于解法一:由等腰三角形三线合一性质得在中,又在中,解得8分解法二:即8分当时,如图,过作于点.解法一:(方法同中解法一)(图)ADCBHNMF解得解法二:即综上所述,当、或时,为等腰三角形9分10.解:(1)正确(1分)ADFCGEBM证明:在上取一点,使,连接(2分),是外角平分线,(ASA)(5分)(6分)(2)正确(7分)证明:在的延长线上取一
11、点ADFCGEBN使,连接(8分)四边形是正方形,(ASA)(10分)(11分)11.解()如图,折叠后点与点重合,则.设点的坐标为.则.于是.在中,由勾股定理,得,即,解得.点的坐标为.4分()如图,折叠后点落在边上的点为,则.由题设,则,在中,由勾股定理,得.,即6分由点在边上,有,解析式为所求.当时,随的增大而减小,的取值范围为.7分()如图,折叠后点落在边上的点为,且.则.又,有.有,得.9分 在中,设,则.由()的结论,得,解得.点的坐标为.10分 12解:方法一:如图(1-1),连接N图(1-1)ABCDEFM 由题设,得四边形和四边形关于直线对称 垂直平分1分 四边形是正方形,
12、设则 在中, 解得,即3分 在和在中,5分 设则 解得即6分 7分 方法二:同方法一,3分 如图(12),过点做交于点,连接N图(1-2)ABCDEFMG四边形是平行四边形 同理,四边形也是平行四边形在与中分6分7分类比归纳(或); 10分联系拓广12分解1:依题意,得AQ=t,BP=2t,QD=16-t。过点Q作QFBP,又AQBF, ABP=90° 四边形AQFB是矩形AQ=BF=t BP=2t FP=t, 在RtQFP中,QP=(12²+t²)又QD=QP=PD (12²+t²)=16-t 12²+t²=16²
13、;-2*16*t+t²解得:t=7/2不知道对不对,错了别怪我。解2:如图所示,:这P作PE垂直AD于E,垂足为E点,则ABPE为矩形.PE=AB=12;AE=BP(1).s=1/2×AB×DQ=1/2×12×(AD-AQ)=6×(16-t)=96-6t;(2).当 BC-2t=21-2t=PC=DQ=AD-t=16-t,即t=5时,四边形PCDQO为平形四边形.(3).QE=AE-AQ=BP-AQ=2t-t=t,而ED=AD-AE=16-BP=16-2t;当QE=ED时,PE为QD的垂直平分线时,PQ=PD,而此时t=16-2t;
14、t=16/3;所以当t=16/3时,PD=PQ;.在RtPEQ中,PE=AB=12; EQ=AE-AQ=PB-AQ=2t-t=t; PQ²=QE²+PE²=t²+12²QD²=(AD-AQ)²=(16-t)² 所以当t²+12²=(16-t)²,即:t=3.5时,DQ=PQ;解:因为C=90°,CBA=30°,BC=203所以可求出AB40如图,圆心从A向B的方向运动时,共有三个位置能使此圆与直线AC或直线BC相切当圆心在O1点时,设切点为P显然PO16,APO190°,AO1P30°所以AO143因为圆O以2个单位长度/秒的速度向右运动所以当t143/223(秒)时,圆O与直线AC相切当圆心在O2点时,设切点为Q显然QO26,BQO290
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级夜色听评课记录
- 湘教版地理八年级下册5.3《西北地区和青藏地区》(第2课时)听课评课记录
- 鲁教版数学八年级下册8.3《用公式法解一元二次方程》听评课记录
- 五年级数学口算竞赛题
- 苏教版小学数学三年级下册口算题
- 苏教版二年级下册数学口算练习题费
- 小学数学-六年级下册-4-3 正比例图像 听评课记录
- 船员劳动合同范本
- 商业房屋租借合同范本
- 2025年度高级技术人才聘用与管理制度合同
- 2025年工贸企业春节复工复产方案
- 2025年蓝莓种苗行业深度研究分析报告
- 2025年事业单位财务工作计划(三篇)
- Unit 2 Know your body(说课稿)-2024-2025学年外研版(三起)(2024)英语三年级下册
- 跨学科主题学习2-探索太空逐梦航天 说课稿-2024-2025学年粤人版地理七年级上册
- 《电子技术应用》课程标准(含课程思政)
- 纸尿裤使用管理制度内容
- 会计专业工作简历表(中级)
- 风居住的街道钢琴二胡合奏谱
- PADS元件封装制作规范要点
- 第一讲数字合成技术概述
评论
0/150
提交评论