自动控制理论21实用教案_第1页
自动控制理论21实用教案_第2页
自动控制理论21实用教案_第3页
自动控制理论21实用教案_第4页
自动控制理论21实用教案_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1自动控制自动控制(z dn kn zh)理论理论21第一页,共28页。Saturday, May 14, 20222 数学数学(shxu)(shxu)模型模型 :描述控制系统变量(物理量)之间动态关系的数学:描述控制系统变量(物理量)之间动态关系的数学(shxu)(shxu)表达式。常用的数学表达式。常用的数学(shxu)(shxu)模型有微分方程,传递函数,结构图,信号流图,频率特性以及状态空间描述等。模型有微分方程,传递函数,结构图,信号流图,频率特性以及状态空间描述等。 例如对一个微分方程,若已知初值和输入值,对微分方程求解,就可以(ky)得出输出量的时域表达式。据此可对系统进行

2、分析。所以建立控制系统的数学模型是对系统进行分析的第一步也是最重要的一步。 控制系统如按照数学模型分类的话,可以分为线性和非线性系统,定常系统和时变系统。概述概述第1页/共28页第二页,共28页。Saturday, May 14, 20223 线性系统线性系统 :如果:如果(rgu)(rgu)系统满足叠加原理,则称其为线性系统。叠加原理说明,两个不同的作用函数同时作用于系统的响应,等于两个作用函数单独作用的响应之和。系统满足叠加原理,则称其为线性系统。叠加原理说明,两个不同的作用函数同时作用于系统的响应,等于两个作用函数单独作用的响应之和。 线性系统对几个(j )输入量同时作用的响应可以一个一

3、个地处理,然后对每一个输入量响应的结果进行叠加。线性定常系统和线性时变系统线性定常系统和线性时变系统:可以用线性定常(常系数)微分方程描述的系统称为线性定常系统。如果:可以用线性定常(常系数)微分方程描述的系统称为线性定常系统。如果(rgu)描述系统的微分方程的系数是时间的函数,则这类系统为线性时变系统。描述系统的微分方程的系数是时间的函数,则这类系统为线性时变系统。 宇宙飞船控制系统就是时变控制的一个例子(宇宙飞船的质量随着燃料的消耗而变化)。概述概述第2页/共28页第三页,共28页。Saturday, May 14, 20224 古典控制理论中(我们(w men)所正在学习的),采用的是单

4、输入单输出描述方法。主要是针对线性定常系统,对于非线性系统和时变系统,解决问题的能力是极其有限的。非线性系统非线性系统(xtng):如果不能应用叠加原理,则系统:如果不能应用叠加原理,则系统(xtng)是非线性的。是非线性的。 下面是非线性系统的一些例子:0, 0) 1(,sin)(322222222xxdtdxdtxdxdtdxxdtxdtAxdtdxdtxd概述概述(i sh)第3页/共28页第四页,共28页。Saturday, May 14, 20225第一节 控制系统(kn zh x tn)的微分方程第4页/共28页第五页,共28页。Saturday, May 14, 20226 微分

5、方程的编写应根据组成系统各元件(yunjin)工作过程中所遵循的物理定理来进行。例如:电路中的基尔霍夫电路定理,力学中的牛顿定理,热力学中的热力学定理等。控制系统控制系统(kn zh x tn)的微分方程的微分方程第5页/共28页第六页,共28页。Saturday, May 14, 20227控制系统控制系统(kn zh x tn)的微分方程的微分方程iooouudtduRCdtudLC22dtduCio由: ,代入得:这是一个线性定常二阶微分方程。iuidtCRidtdiL1dtiCou1解:据基尔霍夫电路定理:iu输入ou输出iuouLRCi第6页/共28页第七页,共28页。Saturda

6、y, May 14, 20228mfmFFx fxm 图2图1xkkxFkxx fxm mNmsNkg/,/.,根据牛顿定理,可列出质量块的力平衡方程如下:这也是一个两阶定常微分方程。X为输出量,F为输入量。在国际单位制中,m,f和k的单位分别为:控制系统控制系统(kn zh x tn)的微分方程的微分方程第7页/共28页第八页,共28页。Saturday, May 14, 20229NSMaRaLaefiauJicM这里(zhl)输入是电枢电压ua和等效到电机转轴上的负载转矩Mc,输出是转速w aaaaueiRdtdiL电枢回路方程为 1Kea其中ea 为反电势常数ffiKeffaCiKKe

7、1此时激磁电流为常数,所以Ce称为电动机电势常数 Cm称为电动机转矩常数,再根据牛顿定律可得机械转动方程cmmdtdJamaffaiCiiKKiKm22电机通电后产生转矩控制系统控制系统(kn zh x tn)的微分方程的微分方程第8页/共28页第九页,共28页。Saturday, May 14, 202210aaaaueiRdtdiLeaCe amiCm cmmdtdJmecacmeaeameameaCCmRdtdmCCLCudtdCCJRdtdCCJL22)(22ccamaummamdtdmTKuKdtdTdtdTT其中 和aaaRLT meamCCJRT 分别称为电磁时间常数和机电时间常

8、数整理(zhngl)得euCK1meamCCRK分别是转速与电压传递系数和转速与负载和传递系数。这里已略去摩擦力和扭转弹性力。控制系统控制系统(kn zh x tn)的微分方程的微分方程第9页/共28页第十页,共28页。Saturday, May 14, 202211需要需要(xyo)讨论的几个问题讨论的几个问题:1、相似、相似(xin s)系统和相似系统和相似(xin s)量:量: idtqiuqCdtdqRdtqdL122我们注意到例2-1和例2-2的微分方程形式是完全 一样的。这是因为:若令 (电荷),则例2-1式的结果变为:可见,同一物理系统有不同形式的数学模型,而不同类型(lixng

9、)的系统也可以有相同形式的数学模型。相似系统和相似量相似系统和相似量定义定义具有相同的数学模型的不同物理系统称为相似系统。例2-1和例2-2称为力-电荷相似系统,在此系统中分别与 为相似量。kfmFx,CiRLuq1,作用利用相似系统的概念可以用一个易于实现的系统来模拟相对复杂的系统,实现仿真研究。第10页/共28页第十一页,共28页。Saturday, May 14, 202212非线性环节非线性环节(hunji)(hunji)微分方程的微分方程的线性化线性化第11页/共28页第十二页,共28页。Saturday, May 14, 202213 若描述系统的数学模型是非线性(微分)方程,则相

10、应的系统称为非线性系统,这种系统不能用线性叠加原理。在经典控制领域对非线性环节的处理能力是很小的。但在工程应用中,除了含有(hn yu)强非线性环节或系统参数随时间变化较大的情况,一般采用近似的线性化方法。对于非线性方程,可在工作点附近用泰勒级数展开,取前面的线性项。可以得到等效的线性环节。 设具有连续变化的非线性函数为:y=f(x),若取某一平衡状态为工作点,如下图中的 。A点附近有点为 ,当 很小时,AB段可近似看做线性的。)(0, 0yxA),(yyxxBx非线性环节非线性环节(hunji)(hunji)微分方微分方程的线性化程的线性化AByx00 xxx00y00yy)(xfy 第12

11、页/共28页第十三页,共28页。Saturday, May 14, 202214AByx00 xxx00y00yy)(xfy .)(|)(! 21)(|)()(20220000 xxdxxdfxxdxxdfxfyxxxx)(0, 0yxA设f(x)在 点连续可微,则将函数在该点展开为泰勒级数,得:若 很小,则 ,即 式中,K为与工作点有关的常数,显然,上式是线性方程,是非线性方程的线性表示。为了保证近似的精度,只能在工作点附近展开。 x)(|000 xxdxdyyyxxxKxdxdyyxx0|非线性环节非线性环节(hunji)(hunji)微分方微分方程的线性化程的线性化第13页/共28页第十

12、四页,共28页。Saturday, May 14, 202215对于具有两个自变量的非线性方程,也可以在静态工作(gngzu)点附近展开。设双变量非线性方程为: ,工作(gngzu)点为 。则可近似为: 式中: , 。 为与工作(gngzu)点有关的常数。),(20100 xxfy ),(21xxfy 2211xKxKy202101202101|,|2211xxxxxxxxxyKxyK1011xxx2022xxx阅读教材例2-5 求液压伺服油缸的线性化数学模型。注意:上述非线性环节不是指典型的非线性特性(如间隙、库仑干摩擦、饱和特性等),它是可以用泰勒级数展开的。实际的工作情况在工作点附近。变

13、量(binling)的变化必须是小范围的。其近似程度与工作点附近的非线性情况及变量(binling)变化范围有关。非线性环节非线性环节(hunji)(hunji)微分方程微分方程的线性化的线性化第14页/共28页第十五页,共28页。Saturday, May 14, 202216非线性环节非线性环节(hunji)(hunji)微分方微分方程的线性化程的线性化 该系统由小车和安装(nzhung)在小车上的倒立摆构成。倒立摆是不稳定的,如果没有适当的控制力作用到它上面,它将随时可能向任何方向倾倒。这里我们只考虑二维问题,即认为倒立摆只在图所在的平面内运动。 若有合适的控制力u作用于小车上可使摆杆维

14、持直立不倒。这实际是一个空间起飞助推器的姿态控制模型(姿态控制问题的目的是要把空间助推器保持在垂直位置)。设小车和摆杆的质量分别为M和m,摆杆长为 ,且重心位于几何中点处,小车距参考坐标的位置为 ,摆杆与铅垂线的夹角为 ,摆杆重心的水平位置为 ,垂直位置为 2xsinxcoscosxmguPMxycosxO第15页/共28页第十六页,共28页。Saturday, May 14, 202217非线性环节非线性环节(hunji)(hunji)微分方程的线性微分方程的线性化化xmguVMxyVHHO设摆杆和小车结合部的水平反力和垂直(chuzh)反力为H和V,略去摆杆与小车、小车与地面的摩擦力。可得

15、方程如下: 摆杆围绕其重心的转动运动 cossindd22HVtJ式中J为摆杆围绕其重心的转动惯量, 为垂直力关于其重心的力矩, 为水平力关于其重心的力矩。 sinVcosH摆杆重心的水平运动 Hxtm)sin(dd22 摆 杆 重 心 的 垂 直 运 动 mgVtm)cos(dd22小车的水平运动 HutxM22dd第16页/共28页第十七页,共28页。Saturday, May 14, 202218非线性环节非线性环节(hunji)(hunji)微分方程的微分方程的线性化线性化sincos若假设角度 很小,则 和 。可得下列(xili)线性化方程: sin1coscossindd22HVt

16、JHxtm)sin(dd22mgVtm)cos(dd22HutxM22dd HVJHxm)( mgV 0HuxM 由和可得 umxmM )(由、和得 mgxmmJ)(2当忽略转动惯量J时 MuMgmM)(当考虑转动惯量 时32mJ )4(3)4()(3mMumMgmM第17页/共28页第十八页,共28页。Saturday, May 14, 2022193.线性系统微分方程线性系统微分方程(wi fn fn chn)的编写步骤:的编写步骤:确定(qudng)系统和各元部件的输入量和输出量。对系统中每一个元件列写出与其输入、输出量有关(yugun)的物理的方程。对上述方程进行适当的简化,比如略去一

17、些对系统影响小的次要因素,对非线性元部件进行线性化等。从系统的输入端开始,按照信号的传递顺序,在所有元部件的方程中消去中间变量,最后得到描述系统输入和输出关系的微分方程。线性系统微分方程的编写步骤线性系统微分方程的编写步骤第18页/共28页第十九页,共28页。Saturday, May 14, 202220负载gueu-+1u- +2u 功率 放大器fu测速发电机cMau解:该系统的组成和原理; 该系统的输出量是 ,输入量是 ,扰动量是gucM线性系统微分方程的编写线性系统微分方程的编写(binxi)例子例子例例2-6第19页/共28页第二十页,共28页。Saturday, May 14, 2

18、02221线性系统微分方程的编写线性系统微分方程的编写(binxi)例例子子例例2-6)()(1110000cCamggmaMMTKuuKKKKTKTTm )(cgMugucM消去中间变量:推出 之间的关系:显然,转速 既与输入量 有关,也与干扰 有关。efgukuuku111)()(1122uuku各环节微分方程:运放: , 运放: 功率放大: ,反馈环节:电动机环节:23ukuaffku )(ccamanmmaMMTkukTTT 见例2-4测速au1u2ueugufu-cM运放运放功放电动机速度控制系统方块图:第20页/共28页第二十一页,共28页。Saturday, May 14, 20

19、2222线性系统微分方程线性系统微分方程(wi fn fn chn)的编写例子的编写例子例例2-6gu)(11000cCammaMMTKKKTKTTm 0, 0gguucM0, 0ccMM)(1110000ggmauuKKKKTKTTm 对于恒值调速系统, =常量,则 。转速的变化仅由负载干扰引起。增量表达式如下:对于随动系统,则 =常数, ,故:根据上式可以讨论输出转速跟随给定输入电压的变化情况。若 和 都是变化的,则对于线性系统应用叠加原理分别讨论两种输入作用引起的转速变化,然后相加。gucM增量增量(zn lin)式分析式分析 (上式等号两端取增量上式等号两端取增量(zn lin):第2

20、1页/共28页第二十二页,共28页。Saturday, May 14, 2022230)()(dtetfsFst)()(tfLsF定义:定义:如果有一个以时间t为自变量的函数f(t),它的定义域t0,那么下式即是拉氏变换式: ,式中s为复数。记作0)(dtetfst)()(1sFLtf一个函数可以进行拉氏变换的充分条件是:t0时,f(t)=0;t0时,f(t)分段连续; 。F(s) 象函数,f(t) 原函数。记 为反拉氏变换。复习复习(fx)拉氏变换拉氏变换4、复习、复习(fx)拉氏变换拉氏变换第22页/共28页第二十三页,共28页。Saturday, May 14, 202224)()()(

21、)(2121sFsFtftfL线性性质:)0()()(fssFtfL)0()0()()(2fsfsFstfL )0(.)0()0()()()1(21)(nnnnnffsfssFstfL微分定理:ssFdttfL)()(积分定理:(设初值为零))()()(0sfedtTtfeTtfLsTst时滞定理:)(lim)(lim0ssFtfst初值定理:复习复习(fx)拉氏变换拉氏变换性质性质(xngzh)(xngzh):第23页/共28页第二十四页,共28页。Saturday, May 14, 202225)(lim)(lim0ssFtfst终值定理:)()()()(21021sFsFdftfLt卷积定理:ssFttf1)(),( 1)(1)()(tLsF21)(,)(ssFttf321)(,21)(ssFttf22)(,sin)(ss

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论