![微分方程的基础概念PPT教案_第1页](http://file3.renrendoc.com/fileroot3/2021-11/28/b92d4938-fe01-4df5-809e-7d8992017dcf/b92d4938-fe01-4df5-809e-7d8992017dcf1.gif)
![微分方程的基础概念PPT教案_第2页](http://file3.renrendoc.com/fileroot3/2021-11/28/b92d4938-fe01-4df5-809e-7d8992017dcf/b92d4938-fe01-4df5-809e-7d8992017dcf2.gif)
![微分方程的基础概念PPT教案_第3页](http://file3.renrendoc.com/fileroot3/2021-11/28/b92d4938-fe01-4df5-809e-7d8992017dcf/b92d4938-fe01-4df5-809e-7d8992017dcf3.gif)
![微分方程的基础概念PPT教案_第4页](http://file3.renrendoc.com/fileroot3/2021-11/28/b92d4938-fe01-4df5-809e-7d8992017dcf/b92d4938-fe01-4df5-809e-7d8992017dcf4.gif)
![微分方程的基础概念PPT教案_第5页](http://file3.renrendoc.com/fileroot3/2021-11/28/b92d4938-fe01-4df5-809e-7d8992017dcf/b92d4938-fe01-4df5-809e-7d8992017dcf5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、微分方程的基础概念微分方程的基础概念微分方程的基本概念 机动 目录 上页 下页 返回 结束 微分方程的基本概念微分方程的基本概念引例引例 几何问题几何问题物理问题物理问题 第十二章 第1页/共8页一曲线通过点(1,2) ,在该曲线上任意点处的解解: 设所求曲线方程为 y = y(x) , 则有如下关系式:xxy2ddxxyd2Cx 2(C为任意常数)由 得 C = 1,.12 xy因此所求曲线方程为21xy由 得切线斜率为 2x , 求该曲线的方程 . 机动 目录 上页 下页 返回 结束 第2页/共8页sm20的速度行驶, 制动时获得加速度,sm4 . 02a求制动后列车的运动规律.解解: 设
2、列车在制动后 t 秒行驶了s 米 ,已知4 . 0dd22ts,00ts200ddtts由前一式两次积分, 可得2122 . 0CtCts利用后两式可得0,2021CC因此所求运动规律为tts202 . 02说明说明: 利用这一规律可求出制动后多少时间列车才能停住 , 以及制动后行驶了多少路程 . 即求 s = s (t) .机动 目录 上页 下页 返回 结束 第3页/共8页常微分方程偏微分方程含未知函数及其导数的方程叫做微分方程微分方程 .方程中所含未知函数导数的最高阶数叫做微分方程(本章内容)0),()(nyyyxF),()1()(nnyyyxfy( n 阶显式微分方程)一般地 , n 阶
3、常微分方程的形式是的阶阶.分类或机动 目录 上页 下页 返回 结束 第4页/共8页,00ts200ddtts引例24 . 022ddxy 使方程成为恒等式的函数.通解通解 解中所含独立的任意常数的个数与方 )1(00)1(0000)(,)(,)(nnyxyyxyyxy 确定通解中任意常数的条件.n 阶方程的初始条件初始条件( (或初值条件或初值条件) ):程的阶数相同.特解特解xxy2dd21xy引例1 Cxy22122 . 0CtCts通解:tts202 . 0212 xy特解:微分方程的解解 不含任意常数的解, 定解条件定解条件 其图形称为积分曲线积分曲线. .机动 目录 上页 下页 返回
4、 结束 第5页/共8页是微分方程tkCtkCxsincos2122ddtx的解,0Axt00ddttx的特解 . 解解: 22ddtxt kkCsin22)cossin(212t kCt kCkxk2这说明tkCtkCxsincos21是方程的解 . 是两个独立的任意常数,21,CC),(21为常数CCt kkCcos2102xk利用初始条件易得: ,1AC 故所求特解为tkAxcos,02C故它是方程的通解.并求满足初始条件 机动 目录 上页 下页 返回 结束 第6页/共8页求所满足的微分方程 .PQxyox解解: 如图所示, yYy1)(xX 令 Y = 0 , 得 Q 点的横坐标yyxX,xyyx即02 xyy点 P(x, y) 处的法线方程为且线段 PQ 被 y 轴平分, 第二节 目录 上页 下页 返回 结束
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 进口委托代理合同
- 设计师聘用合同书
- 美容师聘用标准合同年
- 种苗采购的合同范本
- 互动仪式链视角下轮岗教师专业引领的困境与破解
- 青春期父母预备手册-随笔
- 2025年湘教新版必修1物理下册月考试卷含答案
- 2025年外研版三年级起点九年级历史下册阶段测试试卷含答案
- 智能客服系统合作开发合同(2篇)
- 2025年外研版三年级起点九年级地理上册阶段测试试卷
- 四年级四年级下册阅读理解20篇(附带答案解析)经典
- 大连高新区整体发展战略规划(产业及功能布局)
- 国有资产管理法律责任与风险防控
- 未婚生子的分手协议书
- 变更监事章程修正案范例
- 北京小客车指标租赁协议五篇
- 输液室运用PDCA降低静脉输液患者外渗的发生率品管圈(QCC)活动成果
- YY/T 0681.2-2010无菌医疗器械包装试验方法第2部分:软性屏障材料的密封强度
- 烟气管道阻力计算
- 城乡环卫一体化保洁服务迎接重大节日、活动的保障措施
- 医院-9S管理共88张课件
评论
0/150
提交评论