版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五章第五章 指数指数 t ty y西安石油大学经管院西安石油大学经管院第五章第五章 指数指数主要内容主要内容第二节第二节 综合指数综合指数第三节第三节 平均指数平均指数第四节第四节 指数体系及其指数因素分析指数体系及其指数因素分析第五节第五节 指数数列指数数列第一节第一节 指数的概念及种类指数的概念及种类 v 第一节第一节指数的概念及种类指数的概念及种类一、指数的概念一、指数的概念主要内容主要内容二、指数的种类二、指数的种类三、指数的作用三、指数的作用第一节第一节 指数的概念及种类指数的概念及种类一、指数的概念一、指数的概念概念:概念:广义上的指数:广义上的指数:最初:凡是反映现象变动的最初
2、:凡是反映现象变动的情况的相对数就叫指数;后来拓宽为:任何情况的相对数就叫指数;后来拓宽为:任何两个数值对比形成的相对数都叫指数。两个数值对比形成的相对数都叫指数。 狭义上的指数:狭义上的指数:是用来反映复杂现象综合变是用来反映复杂现象综合变动情况的相对数,即就是用来反映不能直接动情况的相对数,即就是用来反映不能直接相加的,由多要素组成的复杂现象综合变动相加的,由多要素组成的复杂现象综合变动情况的相对数。情况的相对数。 二、指数的分类二、指数的分类个体指数:反映单一现象变动情况的相对数;个体指数:反映单一现象变动情况的相对数;总指数:反映多种现象综合变动情况的相对数。总指数:反映多种现象综合变
3、动情况的相对数。(二)按其反映指标的性质不同分为(二)按其反映指标的性质不同分为 数量指标指数数量指标指数 质量指标指数质量指标指数 数量指标指数:反映数量指标变动情况的相对数;数量指标指数:反映数量指标变动情况的相对数;质量指标指数:反映质量指标变动情况的相对数。质量指标指数:反映质量指标变动情况的相对数。 (一)指数按反映现象范围不同分为(一)指数按反映现象范围不同分为个体指数个体指数总指数总指数第一节第一节 指数的概念及种类指数的概念及种类(三)指数按其对比的基期不同分为(三)指数按其对比的基期不同分为 定基指数定基指数环比指数环比指数定基指数:指数数列中,每一个指数都是以某定基指数:指
4、数数列中,每一个指数都是以某一固定的时期为基期的,则为定基指数;一固定的时期为基期的,则为定基指数;环比指数:若指数数列中每一个指数都是以其环比指数:若指数数列中每一个指数都是以其前一期资料为基期,则为环比指数。前一期资料为基期,则为环比指数。 1.1.可用来分析复杂现象综合变动的方向和程度可用来分析复杂现象综合变动的方向和程度2.2.用来分析复杂现象变动中,受各种构成因素影用来分析复杂现象变动中,受各种构成因素影响的方向和程度(可进行因素分析)响的方向和程度(可进行因素分析)3.3.利用指数分析法,可以用来分析总平均数变动利用指数分析法,可以用来分析总平均数变动中受组平均数和总体构成的影响情
5、况。中受组平均数和总体构成的影响情况。第一节第一节 指数的概念及种类指数的概念及种类三、指数的作用三、指数的作用 第二节第二节 综合指数综合指数一、综合指数的含义一、综合指数的含义 二、综合指数的编制方法二、综合指数的编制方法 三、其它形式综合指数的介绍三、其它形式综合指数的介绍 四、不同权数综合指数的应用四、不同权数综合指数的应用 主要内容主要内容第二节第二节 综合指数综合指数 综合指数:综合指数:由两个综合的总量指标相对比的结果。由两个综合的总量指标相对比的结果。凡是一个总量指标可以分解为两个或两个以上的凡是一个总量指标可以分解为两个或两个以上的因素指标时,将其中的一个或一个以上的因素指因
6、素指标时,将其中的一个或一个以上的因素指标固定下来,仅仅观察其中另一个因素指标的变标固定下来,仅仅观察其中另一个因素指标的变动情况,这样的总指数叫综合指数。动情况,这样的总指数叫综合指数。一、综合指数的含义一、综合指数的含义 主要解决两个问题主要解决两个问题 同度量单位问题同度量单位问题( (相加)相加) 同度量因素固定时期问题同度量因素固定时期问题二、综合指数的编制方法二、综合指数的编制方法 第二节第二节 综合指数综合指数 (一)数量指标指数的编制(一)数量指标指数的编制产品名称产品名称计量计量单位单位产产 量量出厂价格出厂价格(万元)(万元)总产值(万元)总产值(万元)基期基期q q0 0
7、报告报告期期q q1 1基期基期P P0 0报告报告期期p p1 1p p0 0q q0 0p p1 1q q1 1p p0 0q q1 1p p1 1q q0 0球球 鞋鞋万双万双2682313.053.73817.4861.63704.6999.64自行车外胎自行车外胎万条万条63768.208.13516.6617.88623.2512.19三角带三角带万米万米3134131.101.10344.3454.3454.3344.30合合 计计1678.31933.811782.11856.13【例例】某橡胶制品厂三种主要产品产量及出厂价格资料某橡胶制品厂三种主要产品产量及出厂价格资料如下表
8、,试测量该企业三种产品产量的如下表,试测量该企业三种产品产量的综合变动综合变动情况。情况。 这三种产品产量的个体指数为:这三种产品产量的个体指数为: 1 11 10 0q q231231k = 86.2%k = 86.2%q268q2682 27676k =120.6%k =120.6%63633 3413413k =132%k =132%313313现要测量该企业三种产品产量的现要测量该企业三种产品产量的综合变动综合变动情况情况第二节第二节 综合指数综合指数 0 01 1q q0 00 0p p q q1 17 78 82 2. .1 1= = = =1 10 06 6. .2 2% %p
9、p q q1 16 67 78 8. .3 3I I用绝对数表示为:用绝对数表示为: 1 17 78 82 2. .1 1- -1 16 67 78 8. .3 3 = =1 10 03 3. .8 8万万元元(1 1)以)以基期基期价格为同度量因素:目的在于说明在价格为同度量因素:目的在于说明在价格水平不变的情况下,产量的综合变动情况。价格水平不变的情况下,产量的综合变动情况。(2 2)若以)若以报告期报告期价格为同度量因素:目的在于说价格为同度量因素:目的在于说明在报告期价格条件下,产量的综合变动程度。明在报告期价格条件下,产量的综合变动程度。1 11 1q q1 10 0p p q q1
10、 19 93 33 3. .8 81 1I I = = = =1 10 04 4. .1 19 9% %p p q q1 18 85 56 6. .1 13 3用绝对数表示为:用绝对数表示为: 1933.81-1856.13 = 77.681933.81-1856.13 = 77.68万万元元第二节第二节 综合指数综合指数 那么,究竟把价格固定在哪个时期为好呢?那么,究竟把价格固定在哪个时期为好呢?应考虑两点:应考虑两点:一是从实际出发,根据研究的目的来选择固定时期;一是从实际出发,根据研究的目的来选择固定时期;二是看计算结果是否有现实经济意义。二是看计算结果是否有现实经济意义。把价格固定在把
11、价格固定在报告期报告期,将(,将(2 2)式变换如下:)式变换如下:分子分子 1 1 1 11 11 10 00 01 1 0 01 11 10 0p pq q = =q q( (p p - -p p + +p p ) )= =q qp p + +q q( (p p - -p p ) )分母分母 1 1 0 00 01 10 00 00 0 0 00 01 10 0p pq q = =q q( (p p - -p p + +p p ) )= =q q p p + +q q( (p p - -p p ) )第二节第二节 综合指数综合指数 1 11 11 11 11 10 00 00 0q q0
12、00 01 11 10 00 0q q( (p p - -p p ) )q qq q p pq q p p( (+ +I I = = =q q p pq q p pp p - -p p+ +) )1 11 10 01 11 10 01 11 10 00 00 00 0q q p p - -q q p p = =( (q q p p - -q q p p ) )( (q q - -q q ) ) ( (p p - -p p ) )+ +从增加的绝对数上看:从增加的绝对数上看:从相对数上看:从相对数上看:数量指标指数的编制原则:数量指标指数的编制原则:在编制数量指标指数时,选在编制数量指标指数时,
13、选择质量指标为同度量因素,并且把质量指标固定在基期。择质量指标为同度量因素,并且把质量指标固定在基期。 10101010(q -q ) (p -p )(q -q ) (p -p )是产量和价格同时变动的影响,称其是产量和价格同时变动的影响,称其为共变影响额为共变影响额(二)质量指标指数的编制方法(二)质量指标指数的编制方法【例例】某橡胶制品厂三种主要产品产量及出厂价格资料某橡胶制品厂三种主要产品产量及出厂价格资料 如下表,试测量该企业三种产品如下表,试测量该企业三种产品价格价格的的综合变动综合变动情况。情况。 产品名称产品名称计量计量单位单位产产 量量出厂价格出厂价格(万元)(万元)总产值(万
14、元)总产值(万元)基期基期q q0 0报告报告期期q q1 1基期基期P P0 0报告报告期期p p1 1p p0 0q q0 0p p1 1q q1 1p p0 0q q1 1p p1 1q q0 0球球 鞋鞋万双万双2682313.053.73817.4861.63704.6999.64自行车外胎自行车外胎万条万条63768.208.13516.6617.88623.2512.19三角带三角带万米万米3134131.101.10344.3454.3454.3344.30合合 计计1678.31933.811782.11856.13第二节第二节 综合指数综合指数 若固定在若固定在基期基期,从
15、其产生的经济效果看,分子分,从其产生的经济效果看,分子分母之差为:母之差为:1 10 00 00 00 01 10 0p p q q - -p p q q = =q q ( (p p - -p p ) )若固定在若固定在报告期报告期,分子、分母之差为:,分子、分母之差为:1 11 10 01 11 11 10 0p p q q - -p p q q = =q q( (p p - -p p ) )第二节第二节 综合指数综合指数 1 11 1p p0 01 1p p q q1 19 93 33 3. .8 81 1I I = = = =1 10 08 8. .5 51 1% %p p q q1 1
16、7 78 82 2. .0 0)(71.1511 .178281.1933万元由于价格的提高使产值增加了:由于价格的提高使产值增加了:质量指标指数的编制原则:质量指标指数的编制原则:编制质量指标指数时,选择数量指标为同度量因编制质量指标指数时,选择数量指标为同度量因素,并且把数量指标固定在报告期。素,并且把数量指标固定在报告期。第二节第二节 综合指数综合指数 编制综合指数编制综合指数需解决的问题:需解决的问题:( (一一) )拉氏指数拉氏指数 (Etienre LaspeyresEtienre Laspeyres) 18641864年,德国统计学家拉斯贝尔(拉斯佩雷斯)年,德国统计学家拉斯贝尔
17、(拉斯佩雷斯)提出把同度量因素固定在基期,即:提出把同度量因素固定在基期,即: 1000 qIq pq p 1000 pIpqpq (二)派氏指数(二)派氏指数 (Hermann PaascheHermann Paasche) 18741874年,德国另一位统计学家派许提出把同度量年,德国另一位统计学家派许提出把同度量因素固定在报告期,即采用:因素固定在报告期,即采用: 三、其它形式的综合指数的介绍三、其它形式的综合指数的介绍第二节第二节 综合指数综合指数 相加问题相加问题同度量因素固定时期问题同度量因素固定时期问题1101 qIq pq p 1111p p0101I Ipqpq= = p q
18、p q110110q q001001 (+)/2(+)/2q ppq pp= =I I (+)/2(+)/2q ppq pp(三)马埃指数(英国(三)马埃指数(英国ALfred MarshallALfred Marshall)和(英)和(英 国统计学家国统计学家 Francis Ysidro EdgeworthFrancis Ysidro Edgeworth) 18871887年,英国经济学家马歇尔提出了以基期与报年,英国经济学家马歇尔提出了以基期与报告期的实物平均量作权数的综合物价指数,后又告期的实物平均量作权数的综合物价指数,后又被英国统计学家埃奇沃斯所推于,故被称为马埃被英国统计学家埃奇
19、沃斯所推于,故被称为马埃指数,公式为:指数,公式为: 1011011011101100100100010001q p +q pq p +q pq(p +p)q(p +p)=q(p +p)q(p +p)q p +q pq p +q p1011011011101100100100010001p q +p qp q +p qp(q +q)p(q +q)=p(q +q)p(q +q)p q +p qp q +p q110110p p001001 (+)/2(+)/2p qqp qq= =I I (+)/2(+)/2p qqp qq第二节第二节 综合指数综合指数 (四)费雪指数(四)费雪指数(Irvin
20、g FisherIrving Fisher) 19111911年,英国统计学家费雪提出了交叉计算年,英国统计学家费雪提出了交叉计算的公式,即拉氏与派氏的几何平均公式为:的公式,即拉氏与派氏的几何平均公式为: ppppppI = L I = L P PqqqqqqI = L I = L P P101 1101 1000 1000 1q pq pq pq p=q pq pq pq p第二节第二节 综合指数综合指数 1 01 11 01 1000 1000 1p qp qp qp q=p qp qp qp q理想公式同马埃公式一样,虽然介于拉、派氏之理想公式同马埃公式一样,虽然介于拉、派氏之间,但同
21、样缺乏明确的经济意义,而且所用资料间,但同样缺乏明确的经济意义,而且所用资料更多,计算较困难。更多,计算较困难。(五)固定权数的综合指数(英国杨格公式,(五)固定权数的综合指数(英国杨格公式,YoungYoung)固定权数综合指数的权数既不固定在基期,也不固定权数综合指数的权数既不固定在基期,也不固定在报告期,而是固定在特定时期水平上。即固定在报告期,而是固定在特定时期水平上。即用某一年份的物量构成,延续多年来编制价格指用某一年份的物量构成,延续多年来编制价格指数;或以某一年份的价格作为固定的权数,延续数;或以某一年份的价格作为固定的权数,延续多年来编制物量指数。多年来编制物量指数。第二节第二
22、节 综合指数综合指数 1 n1 np p0n0np qp qI =I =p qp q1n1nq q0n0nq pq pI =I =q pq pn-n-固定时期。固定时期。 这种指数也是一种折忠的办法,借以避免拉氏、派这种指数也是一种折忠的办法,借以避免拉氏、派氏公式所产生的偏误。氏公式所产生的偏误。优点:优点:权数不随基期和报告期的改变而改变,权数权数不随基期和报告期的改变而改变,权数一经选定,多年不变。采用固定权数,不但方便于一经选定,多年不变。采用固定权数,不但方便于指数的编制,而且便于观察现象长期发展变化的总指数的编制,而且便于观察现象长期发展变化的总趋势,增强指数数列的可比性。趋势,增
23、强指数数列的可比性。第二节第二节 综合指数综合指数 缺点:缺点:第二节第二节 综合指数综合指数 权数一经确定使用多年,若现象发展变化较大,权数一经确定使用多年,若现象发展变化较大,特别是市场价格变动很大,固定权数就会严重背特别是市场价格变动很大,固定权数就会严重背离客观实际不能真实反映现象的变动情况。离客观实际不能真实反映现象的变动情况。其分子分母差额没有现实经济意义。其分子分母差额没有现实经济意义。不变格编制工作量较大(实际中常用的不变权不变格编制工作量较大(实际中常用的不变权数是不变价格)。实际工作中,我国的工农业产数是不变价格)。实际工作中,我国的工农业产品产量指数就是以不变价格为固定权
24、数的。品产量指数就是以不变价格为固定权数的。当不变权数变化时,仍要不变权数的影响(指当不变权数变化时,仍要不变权数的影响(指数)必须进行调整换算成同一不变价格,才有可数)必须进行调整换算成同一不变价格,才有可比性。因此固定权数必须每隔一定时期加以调整,比性。因此固定权数必须每隔一定时期加以调整,通常以通常以5 5年,年,1010年更换一次权数。年更换一次权数。实际中,我国的工业产品产量指数就是采用不变价实际中,我国的工业产品产量指数就是采用不变价格为固定权数的。其优点是可以事先编制不变价格格为固定权数的。其优点是可以事先编制不变价格目录,编指数时,查目录即可得价格资料,操作方目录,编指数时,查
25、目录即可得价格资料,操作方便。我国先后制定过六次不变价格。便。我国先后制定过六次不变价格。5252年、年、5757年、年、7070年、年、8080年、年、9090年、年、20002000年。年。四、其它形式综合指数的应用)四、其它形式综合指数的应用)(一)地区物价比较指数(一)地区物价比较指数甲甲乙乙p p乙乙乙乙p qp qI =I =p qp q这一公式属于拉氏指数范畴,计算结果有偏大或偏这一公式属于拉氏指数范畴,计算结果有偏大或偏小的倾向。因此,若对比的两个地区小的倾向。因此,若对比的两个地区物量构成差异物量构成差异较大较大时,计算物价地区性指数,一般用马埃指数来时,计算物价地区性指数,
26、一般用马埃指数来编制地区物价比较指数。编制地区物价比较指数。第二节第二节 综合指数综合指数 甲甲甲乙乙甲乙乙p pI Ip q +p qp q +p q= =p q +p qp q +p q【例例】对甲乙两个地区的水果销量及价格进行调查,对甲乙两个地区的水果销量及价格进行调查,获得如下资料,试以乙城市作为对比基础,计算两获得如下资料,试以乙城市作为对比基础,计算两个地区水果的物价地区比较指数。个地区水果的物价地区比较指数。商品商品单位单位销售量销售量价格(元价格(元/ /公斤)公斤)销售额(万元)销售额(万元)甲地区甲地区q q甲甲乙地区乙地区q q乙乙甲地区甲地区p p甲甲 乙地区乙地区p
27、p乙乙 香蕉香蕉万公斤万公斤2020(77%77%)5 5(25%25%)1.41.42.02.07 7101028284040苹果苹果万公斤万公斤1010(33%33%)1515(75%75%)2.02.01.21.23030181820201212合计合计 3737282848485252乙甲qp甲乙qp甲甲qp乙乙qp第二节第二节 综合指数综合指数 解:根据拉氏指数计算:解:根据拉氏指数计算: 甲甲 乙乙p p乙乙 乙乙p q37p q37=132.14%=132.14%I I2828p qp q= =甲甲 甲甲p p乙乙 甲甲p q48p q48=92.3%=92.3%I I5252p
28、 qp q= =根据派氏指数计算:根据派氏指数计算:在两个城市水果在两个城市水果销售量构成差异较大销售量构成差异较大情况下,计算结情况下,计算结果偏误也较大在这里拉氏计算结果呈编大现象,若果偏误也较大在这里拉氏计算结果呈编大现象,若甲地区物量为权数,即用派氏指数计算,则结果必然甲地区物量为权数,即用派氏指数计算,则结果必然会偏小。会偏小。第二节第二节 综合指数综合指数 马埃指数计算:马埃指数计算:甲甲甲甲甲甲乙乙乙乙甲甲乙乙乙乙p p48+3748+37=106.25%=106.25%I I52+2852+28p q +p qp q +p q= =p q +p qp q +p q结果表明甲城市
29、的水果价格平均比乙城市高结果表明甲城市的水果价格平均比乙城市高6.25%6.25%。(二)成本计划完成指数(二)成本计划完成指数检查成本综合计划完成情况时,需编制成本计划检查成本综合计划完成情况时,需编制成本计划完成指数。一般用计划数为同度量因素(为了完成指数。一般用计划数为同度量因素(为了避免实际产品产量构成与计划产品产量构成不同避免实际产品产量构成与计划产品产量构成不同的影响,应以计划产量作为同度量因素)的影响,应以计划产量作为同度量因素)1 n1 nz znnnnzqzqI =I =z qz q第二节第二节 综合指数综合指数 【例例】某工业企业三种产品的单位成本和产量计划数、某工业企业三
30、种产品的单位成本和产量计划数、实际数,如下表,试计算该企业全部产品成本综合计实际数,如下表,试计算该企业全部产品成本综合计划完成程度指数。划完成程度指数。 产品产品名称名称计量计量单位单位产量产量单位产品成本(元)单位产品成本(元)总成本(元)总成本(元)q qn nq q1 1 z zn nz z1 1Z Z1 1q qn nz zn nq qn nz z1 1q q1 1z zn nq q1 1甲甲台台800 800 42%42%1200 1200 57%57%242422221760017600192001920026400264002880028800乙乙件件60060031.6%31
31、.6%60060028.6%28.6%181818181080010800108001080010800108001080010800丙丙公斤公斤500 500 26.3%26.3%300 300 14%14%1515191995009500750075005700570045004500合计合计 3790037900375003750042900429004410044100第二节第二节 综合指数综合指数 1 11 1z zn 1n97.28%=97.28%4410044100zqzqI =I =z qz q1 n1 nz znnnn3790037900=101.0
32、7%=101.07%3750037500zqzqI =I =z qz q解:以计划产量为权数计算:解:以计划产量为权数计算:以实际产量为权数计算:以实际产量为权数计算:所得结果表明实际超计划完成成本降低任务,这是所得结果表明实际超计划完成成本降低任务,这是在实际产品产量构成在实际产品产量构成背离背离计划要求下实现的。因此,计划要求下实现的。因此,为了严格保持计划生产的要求,在检查成本计划完为了严格保持计划生产的要求,在检查成本计划完成程度时,必须用计划产量为权数计算。成程度时,必须用计划产量为权数计算。第二节第二节 综合指数综合指数 (三)(三) 工业产品产量总指数的编制(工业生产指数)工业产
33、品产量总指数的编制(工业生产指数)我国工业产品产量指数一般是以不变价格为权数偏我国工业产品产量指数一般是以不变价格为权数偏制的,即:制的,即:1n1nq q0n0nq pq pI =I =q pq pnp-不变价格不变价格 (四)进出口单位商品价格指数(四)进出口单位商品价格指数 各国编制对外贸易进(出)口单位价格指数,主要各国编制对外贸易进(出)口单位价格指数,主要用来分析研究本国对外贸易价格的增减变化情况。用来分析研究本国对外贸易价格的增减变化情况。11q1 1p p0 0p pI =I =p qp qq具体固定在什么时期,各国不尽相同。德、法、印度、具体固定在什么时期,各国不尽相同。德、
34、法、印度、巴西等国以报告期物量为权数;英、加拿大以基期物量巴西等国以报告期物量为权数;英、加拿大以基期物量为权数;美国、日本用费雪公式计算;联合国计算世界为权数;美国、日本用费雪公式计算;联合国计算世界贸易价格指数用报告期物量为权数,我国和联合国一致。贸易价格指数用报告期物量为权数,我国和联合国一致。第二节第二节 综合指数综合指数 (五)股票价格指数(五)股票价格指数 1.1.香港的恒生指数是以香港的恒生指数是以19641964年年7 7月月3131日为基日计算的:日为基日计算的: p pI I= =计计算算日日的的资资本本总总市市值值基基日日的的资资本本总总市市值值恒生指数是根据恒生指数是根
35、据3333种上市股票每天的收市价,算出当种上市股票每天的收市价,算出当日这些上市公司的总市值,再与基期的总市值相比得日这些上市公司的总市值,再与基期的总市值相比得出当日的指数。出当日的指数。上海证券交易所上证综合指数采用的是上海证券交易所上证综合指数采用的是派氏派氏价格指数,价格指数,上市的全部股票都参与计算,以正式开业日上市的全部股票都参与计算,以正式开业日19901990年年3 3月月1919日为基期。该指数于日为基期。该指数于19911991年年7 7月月1515日正式公布。计算日正式公布。计算公式为:公式为:2.2.上证综合指数上证综合指数 第二节第二节 综合指数综合指数 10 1qp
36、 q 本本日日市市价价总总值值本本日日股股价价指指数数基基日日市市价价总总值值1 1= = p p= =3.3.深证综合指数深证综合指数 19911991年年4 4月月4 4日起,深圳各股票在深圳交易所集中上市,日起,深圳各股票在深圳交易所集中上市,并以并以4 4月月3 3日为基日,编制深交所股票价格指数,采用日为基日,编制深交所股票价格指数,采用递推的方法计算股票价格指数。递推的方法计算股票价格指数。今今日日现现时时总总市市值值今今日日现现时时股股价价指指数数上上日日收收市市总总市市值值= = 另外,有日本的日经另外,有日本的日经道指数(平均式指数)道指数(平均式指数) 、美、美国的道国的道
37、琼斯股价指数(平均式指数)琼斯股价指数(平均式指数) 、斯坦达德、斯坦达德普尔股价指数(综合指数)等。普尔股价指数(综合指数)等。 第二节第二节 综合指数综合指数 第三节第三节 平均指数(平均式指数)平均指数(平均式指数)一、平均指数的意义一、平均指数的意义 二、平均指数的编制方法二、平均指数的编制方法平均指数按平均形式不同分为平均指数按平均形式不同分为平均指数平均指数是已知数量指标或质量指标的个体指数,然是已知数量指标或质量指标的个体指数,然后对其进行加权平均来测定现象的综合变动情况的。后对其进行加权平均来测定现象的综合变动情况的。 加权算术平均指数加权算术平均指数加权调和平均指数加权调和平
38、均指数第三节第三节 平均指数平均指数(一)加权算术平均式指数(一)加权算术平均式指数1.1.用综合指数变形权数计用综合指数变形权数计10qq0 00 0q q0 00 0q Pq PK =K =q Pq P 【例例】仍用前面资料为例,试测定该企业三种产品仍用前面资料为例,试测定该企业三种产品产量的平均变动情况。产量的平均变动情况。产品名称产品名称产量个体指数产量个体指数k kq q(% %)基期实际产值基期实际产值(万元)(万元)p p0 0q q0 0按基价计报产值按基价计报产值(万元)(万元)球球 鞋鞋86.286.2817.4817.4704.6704.6自行车外胎自行车外胎120.61
39、20.6516.6516.6623.0623.0三三 角角 带带132.0132.0344.3344.3454.5454.5合合 计计 1678.31678.31782.11782.100qpkqq q00000000= =p qp qk kp qp q第三节第三节 平均指数平均指数1 10 00 00 0q q0 00 0q Pq P1782.11782.1K =106.2%K =106.2%q P1678.3q P1678.3q qq qkwkwK =K =w wq qq qw w= =w wk kk k绝:绝:1782.11782.11678.3=103.8(1678.3=103.8(万
40、元万元) )和综合指数的计算结果是一致的。由此现用和综合指数的计算结果是一致的。由此现用00qp作权数时,加权算术平均指数与综合指数的经济内作权数时,加权算术平均指数与综合指数的经济内容和计算结果是一致的。容和计算结果是一致的。2.2.固定权数的加权算术平均指数固定权数的加权算术平均指数p pp pw w= =w wk kk kw=100w=100W W为各类商品零售额比重为各类商品零售额比重第三节第三节 平均指数平均指数我国工业产品出厂价格指数,另售商品价格指数,我国工业产品出厂价格指数,另售商品价格指数,工业原材料价格指数等都采用这种办法编制。工业原材料价格指数等都采用这种办法编制。【例例
41、】某市某年居民生活费支出构成及生活费价某市某年居民生活费支出构成及生活费价格类指数如下:格类指数如下:生活消费品大类生活消费品大类类价格指数类价格指数k kp p(% %) 固定权数固定权数w wk kp p w w食品类食品类10510537.737.739.5939.59衣着类衣着类1071079.89.810.4810.48日用品类日用品类1041046.46.4 6.66 6.66教育文化娱乐用品类教育文化娱乐用品类102102151515.3015.30居住居住10310310.410.410.7110.71医疗保健用品医疗保健用品1041047.17.1 7.38 7.38交通通讯
42、交通通讯10510510.410.410.9210.92杂项商品与服务杂项商品与服务1031033.23.2 3.30 3.30合合 计计 100100104.34104.34第三节第三节 平均指数平均指数消费总额为消费总额为100100,w w为各类商品消费额所占的比重,为各类商品消费额所占的比重,只需将分子求出,加以百分号即可。只需将分子求出,加以百分号即可。该城市居民生活消费品价格报告期比基期提高了该城市居民生活消费品价格报告期比基期提高了4.34%4.34%。(二)加权调和平均式指数(二)加权调和平均式指数1.1.综合指数变形权数计综合指数变形权数计它是以质量指标的个体指数为基础,以报
43、告期的总它是以质量指标的个体指数为基础,以报告期的总值指标为权数,采用加权调和平均的形式对质量指值指标为权数,采用加权调和平均的形式对质量指标的个体指数求平均值的。标的个体指数求平均值的。 1111p p1111p pp qp qk k1 1p qp qk k= =第三节第三节 平均指数平均指数产品名称产品名称 k kp p甲甲122.30122.30861.63861.63704.6704.6乙乙99.1599.15617.88617.88623.2623.2丙丙100.00100.00454.30454.30454.3454.3合合 计计 1933.811933.811782.11782.
44、111qpkpqp11【例例】仍用前面综合指数资料为例,试测定该企业仍用前面综合指数资料为例,试测定该企业三种产品价格的平均变动情况。三种产品价格的平均变动情况。解:解:1111p p1111p pp qp q1933.811933.81k=108.51%k=108.51%1 11782.11782.1p qp qk k= = 1933.81 1933.811782.1=151.71(1782.1=151.71(万元万元) )第三节第三节 平均指数平均指数2.2.固定权数计算的加权调和平均指数固定权数计算的加权调和平均指数w wk k1 1w wk k= =p pp pw wk k1 1w w
45、k k= =q qq qw wk k1 1w wk k= =第三节第三节 平均指数平均指数平均方法平均方法指标指标权数权数先先加权算术加权算术数量指标数量指标基期基期后后加权调和加权调和质量指标质量指标报告期报告期第四节第四节 指数体系及其指数因素分析指数体系及其指数因素分析一、指数体系及因素分析的意义一、指数体系及因素分析的意义指数体系:指数体系:把在经济上有相关联系,在数量上保把在经济上有相关联系,在数量上保持一定关系的三个或三个以上的指数所形成的整持一定关系的三个或三个以上的指数所形成的整体叫指数体系。体叫指数体系。指数因素分析:指数因素分析:借助于指数体系来分析复杂现象借助于指数体系来
46、分析复杂现象变动中各种构成因素变动影响的方向和程度。变动中各种构成因素变动影响的方向和程度。二、总量指标指数因素分析二、总量指标指数因素分析 (一)总量指标两因素指数因素分析(一)总量指标两因素指数因素分析 第四节第四节 指数因素分析指数因素分析产品产品名称名称计量计量单位单位产量产量出厂价格出厂价格(万元)(万元)总产值(万元)总产值(万元)基期基期q q0 0报告期报告期q q1 1基期基期p p0 0报告期报告期p p1 1p p0 0q q0 0p p1 1q q1 1p p0 0q q1 1甲甲万双万双2682682312313.053.053.733.73817.4817.4861
47、.63861.63704.6704.6乙乙万条万条636376768.208.208.138.13516.6516.6617.88617.88623.2623.2丙丙万米万米3133134134131.101.101.101.10344.3344.3454.30454.30454.3454.3合计合计 1678.31678.31933.811933.811782.11782.1【例例】某企业资料如下表,试从相对数和绝对数两方面某企业资料如下表,试从相对数和绝对数两方面计算与分析三种产品产值的综合变动情况及其变动原因。计算与分析三种产品产值的综合变动情况及其变动原因。1 11 10 00 0p
48、p q q1 19 93 33 3. .8 81 1I I= = = =1 11 15 5. .2 22 2% %p p q q1 16 67 78 8. .3 3解:解:绝:绝:1933. 811933. 811678.3=255.51(1678.3=255.51(万元万元) )1.1.总产值的变动情况总产值的变动情况第四节第四节 指数因素分析指数因素分析2.2.产量变动对产值的影响产量变动对产值的影响10100000q qq pq p1782.11782.1=106.19%=106.19%q p1678.3q p1678.3I I影响的绝对数为:影响的绝对数为:1782.11782.116
49、78.3=103.8(1678.3=103.8(万元万元) )3.3.价格变动对产值的影响价格变动对产值的影响1 11 10 01 1p pp p q q1 19 93 33 3. .8 81 1= = = =1 10 08 8. .5 51 1% %p p q q1 17 78 82 2. .1 1I I影响的绝对数为:影响的绝对数为:1933.811933.811782.1=151.71(1782.1=151.71(万元万元) )相对数相对数:115.22%=106.19%:115.22%=106.19%108.51%108.51%绝对数绝对数:255.51=103.8+151.71:25
50、5.51=103.8+151.71指数体系指数体系: :第四节第四节 指数因素分析指数因素分析(二)多因素指数因素分析(二)多因素指数因素分析第一:遵守综合指数分析的一般原则;第一:遵守综合指数分析的一般原则; 第二:根据现象之间的经济联系合理排列各因第二:根据现象之间的经济联系合理排列各因素指标之间的顺序,以此来确定加入因素的固素指标之间的顺序,以此来确定加入因素的固定时期。定时期。第四节第四节 指数因素分析指数因素分析第四节第四节 指数因素分析指数因素分析原材料消耗量原材料消耗量原原材材料料产产品品单单位位产产品品原原单单位位原原材材料料= =支支出出额额产产量量材材料料消消耗耗量量购购进
51、进价价格格单位产品原材料支出额单位产品原材料支出额变 0 0 变变01 1 1 (大到小) 由上可以看出,相对于变动因素来说是数量指标由上可以看出,相对于变动因素来说是数量指标的固定在报告期,是质量指标的固定在基期。的固定在报告期,是质量指标的固定在基期。第四节第四节 指数因素分析指数因素分析日劳动生产率日劳动生产率一个月工作一个月工作小时总数小时总数变变数(数(1 1)数(数(1 1)质(质(0 0)变变数(数(1 1)质(质(0 0)质(质(0 0)变变工工 业业工工人人时时劳劳动动实实际际工工作作日日实实际际工工作作月月= =总总产产值值人人数数生生产产率率平平 均均长长 度度平平 均均
52、长长 度度(小到大)(小到大) 工作总天数工作总天数数(数(1 1)数(数(1 1)数(数(1 1)变变质(质(0 0)质(质(0 0)质(质(0 0)第四节第四节 指数因素分析指数因素分析【例例】某公司资料如下表,试从相对数和绝对数两方面某公司资料如下表,试从相对数和绝对数两方面 计算与分析该公司总产值的变动情况及其变动原因。计算与分析该公司总产值的变动情况及其变动原因。 企企业业时劳动率时劳动率(元(元/时)时)日长度(时)日长度(时)月长度(时)月长度(时) 工人数(人)工人数(人)总产值(万元)总产值(万元)基期基期 a 0报告报告期期a1基期基期b0报告报告期期b1基期基期 c0报告
53、报告期期c1基期基期 d0报告报告期期d1a a0 0b b0 0c c0 0d d0 0a a1 1b b1 1c c1 1d d1 1a a0 0b b1 1c c1 1d d1 1a a0 0b b0 0c c1 1d d1 1a a0 0b b0 0c c0 0d d1 1甲甲505052528 87.57.525252626200200220220200200223.0223.08 8214.5214.5228.8228.8220220乙乙7 780808 87.87.8262626.526.51001009494145.6145.6155.4155.44 4136.0136.01
54、1139.5139.5136.86136.86公公司司 300300314314345.6345.6378.5378.52 2350.5350.51 1368.3368.3356.86356.86第四节第四节 指数因素分析指数因素分析1.1.总产值的变动情况总产值的变动情况 11dd111111a a011011378.52378.52=107.99%=107.99%350.51350.51a bca bcI Ia bca bc绝:绝:378.52378.52345.6=32.92345.6=32.92(万元)(万元)2.2.时劳动生产率的变动对总产值的影响时劳动生产率的变动对总产值的影响 1
55、0dd111111000000378.52378.52=109.525%=109.525%345.6345.6a bca bcI Ia b ca b c影响绝对数:影响绝对数:378.52-350.51=28.01378.52-350.51=28.01(万元)(万元)3.3.工作日长度的变动工作日长度的变动对对总产值的影响总产值的影响00110011c c00010001368.3368.3=103.21%=103.21%356.86356.86a b cda b cdI Ia b c da b c d绝:绝:350.51-368.3=-17.79(350.51-368.3=-17.79(万元
56、万元) )4.4.工作月长度的变动对总产值的影响工作月长度的变动对总产值的影响01110111b b00110011350.51350.51= 95.17%= 95.17%368.3368.3a bcda bcdI Ia b cda b cd绝:绝:368.3-356.86=11.44(368.3-356.86=11.44(万元万元) )第四节第四节 指数因素分析指数因素分析5.5.人数的变动对总产值的影响人数的变动对总产值的影响绝:绝:356.86-345.6=11.26356.86-345.6=11.26(万元)(万元)00010001d d00000000356.86356.86=103
57、.26%=103.26%345.6345.6a b c da b c dI Ia b c da b c d相:相:109.525109.525=107.99%=107.99%95.17%95.17%103.21%103.21%103.26%103.26%绝:绝:32.92=28.01-17.79+11.44+11.2632.92=28.01-17.79+11.44+11.26五者之间的关系:五者之间的关系:第四节第四节 指数因素分析指数因素分析三、平均指标指数及其因素分析三、平均指标指数及其因素分析(一)平均指标指数的意义(一)平均指标指数的意义 含义:含义:平均指标指数:是反映平均指标变动情
58、况的平均指标指数:是反映平均指标变动情况的相对数,即由两个不同时期同一经济内容的平均指相对数,即由两个不同时期同一经济内容的平均指标相对比的所形成的指数。标相对比的所形成的指数。 平均指标指数和平均指数不同:平均指标指数和平均指数不同:平均指数是对个体平均指数是对个体指数求平均数的;而平均指标指数是反映平均数的指数求平均数的;而平均指标指数是反映平均数的变动情况的。变动情况的。平均指标指数的基本公式是:平均指标指数的基本公式是: 1 10 0I I= =x xx x平均数的大小受两个因素的影响:各组平均数(各平均数的大小受两个因素的影响:各组平均数(各个变量值)、各组单位数占总体单位数比重。即
59、个变量值)、各组单位数占总体单位数比重。即 第四节第四节 指数因素分析指数因素分析f fx =x =x xf f为了分析平均数的变动情况及其变动原因,需计为了分析平均数的变动情况及其变动原因,需计算以下三个指数。算以下三个指数。(二)平均指标指数及其因素分析(二)平均指标指数及其因素分析 1.1.可变构成指数可变构成指数11 10 011 10 0可可10100 0 x fx fx fx f=f ff fx xI Ix x1 11 11 10 00 00 0f fx xf f= =f fx xf f1 10 01 10 01010 x fx fx fx ff ff f绝对数:绝对数:第四节第四
60、节 指数因素分析指数因素分析110111固固X fX fffI2.2.固固定定结结构构指指数数010001001010X fX fX fX fffff=I I结结3.3.结结构构影影响响指指数数绝:分子绝:分子- -分母分母 绝:分子绝:分子- -分母分母 第四节第四节 指数因素分析指数因素分析111101= =fXffXf 1 10 01 10 00 00 0f fX Xf f= =f fX Xf f 指指数数体体系系: :110011010100101110)(X fX fX fX fX fX fffffff1 1001 10 10 1001 1001 10 10 100101110101
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能安防及弱电系统2025年度施工合同
- 2025年天津货运从业资格证题
- 2025年廊坊货运从业资格证在哪里练题
- 土石方装卸作业2025年度物流服务合同3篇
- 二零二五年度出租房卫生应急预案与租户安全协议4篇
- 二零二五版教育合同:国防奖学金项目实施与管理协议6篇
- 事业单位市场营销合作协议(2024年修订版)3篇
- 二零二五年高性能混凝土运输及安装合同模板3篇
- 二零二五年度彩钢瓦产品售后维修及保养协议3篇
- 2025年度窗帘行业人才培养与就业服务合同3篇
- 中国末端执行器(灵巧手)行业市场发展态势及前景战略研判报告
- 北京离婚协议书(2篇)(2篇)
- 2025中国联通北京市分公司春季校园招聘高频重点提升(共500题)附带答案详解
- Samsung三星SMARTCAMERANX2000(20-50mm)中文说明书200
- 2024年药品质量信息管理制度(2篇)
- 2024年安徽省高考地理试卷真题(含答案逐题解析)
- 广东省广州市2024年中考数学真题试卷(含答案)
- 高中学校开学典礼方案
- 内审检查表完整版本
- 3级人工智能训练师(高级)国家职业技能鉴定考试题及答案
- 孤残儿童护理员技能鉴定考试题库(含答案)
评论
0/150
提交评论