




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 21.2.4一元二次方程的根与系数的关系学习目标:学习目标: 1.1.熟练掌握一元二次方程根与系数的关系;熟练掌握一元二次方程根与系数的关系;2.2.灵活运用一元二次方程根与系数的关系灵活运用一元二次方程根与系数的关系解决实际问题;解决实际问题;一元二次方程一元二次方程 axax2 2+bx+c=0(a0)+bx+c=0(a0)的求根公式:的求根公式:x=aacbb242(b2-4ac0)(1)x2-7x+12=0(2)x2+3x-4=0(4) 2x2+3x-2=0解下列方程并完成填空:方程两根两根和X1+x2两根积x1x2x1x2x2-7x+12=0 x2+3x-4=03x2-4x+1=0
2、2x2+3x-2=0341271-3- 4- 4-1-221(3)3x2-4x+1=01方程两根两根和X1+x2两根积x1x2x1x2x2-7x+12=0 x2+3x-4=03x2-4x+1=02x2+3x-2=0-341271-3- 4- 4-1-2211猜想猜想:(1)形如)形如x2 +px+q=0的一元二次方程两根的和、积分别有如下关系: 21xx21xxabac21xx21xx (2)形如形如ax2+bx+c=0(a0)的一元二次方程两根的和、积分别有如下关系:-pqaacbbx2421aacbbx2422X1+x2=aacbb242aacbb242+=ab22=ab-X1x2=aac
3、bb242aacbb242=242)42(2)(aacbb=244aac=ac证明:证明:设ax2+bx+c=0(a0)的两根为x1、x2,则一元二次方程的根与系数的关系:如果方程ax2+bx+c=0(a0)的两个根是x1 , x2 ,那么x1+x2= , x1x2 = ab-ac注:能用公式的前提条件为=b2-4ac0在使用根与系数的关系时,应注意:在使用根与系数的关系时,应注意:不是一般式的要先化成一般式;不是一般式的要先化成一般式;在使用在使用X1+X2= 时,时, 注意注意“ ”不要漏写。不要漏写。ab如果方程x2+px+q=0的两根是X1 ,X2,那么X1+X2= , X1X2= .
4、Pq 一元二次方程一元二次方程根与系数的关系根与系数的关系是是法国数学家法国数学家“韦达韦达”发现的发现的,所以我们又所以我们又称之为称之为韦达定理韦达定理.说出下列各方程的说出下列各方程的两根之和两根之和与与两根之积两根之积:(1) x2 - 2x - 1=0(3) 2x2 - 6x =0(4) 3x2 = 4(2) 2x2 - 3x + =021x1+x2=2x1x2=-1x1+x2=x1+x2=3x1+x2=0 x1x2=x1x2=0 x1x2= -234134212 xx题题1、方程、方程2x2-3x-1=0的两根记作的两根记作x1,x2,不,不解方程,求:解方程,求:2221xx22
5、1)(xx221)(xx221)(xx 214 xx2111xx) 1)(1(21xx21xx2121xxxx1)(2121xxxx221)(xx212214)(xxxx-32先将所求的代数式化成含两根之和先将所求的代数式化成含两根之和, ,两根两根之积的形式之积的形式, ,再整体代入再整体代入. .求与方程的根有关的代数式的值时求与方程的根有关的代数式的值时, ,一般一般几种常见的求值几种常见的求值:2111. 1xx2121xxxx ) 1)(1.(321xx1)(2121xxxx1221. 2xxxx212221xxxx 21212212)(xxxxxx21. 4xx221)(xx 21
6、2214)(xxxx题题2、已知方程、已知方程x2-(k+1)x+3k=0的一个根是的一个根是2 , 求它的另一个根及求它的另一个根及k的值的值.解法一解法一:设方程的另一个根为设方程的另一个根为x2.由根与系数的关系,得由根与系数的关系,得2 x2 = k+12 x2 = 3k解这方程组,得解这方程组,得x2 =3 k =2答:方程的另一个根是答:方程的另一个根是3 , k的值是的值是2.题题2、已知方程、已知方程x2-(k+1)x+3k=0的一个根是的一个根是2 , 求它的另一个根及求它的另一个根及k的值。的值。解法二解法二:设方程的另一个根为设方程的另一个根为x2.把把x=2代入方程,得
7、代入方程,得 4-2(k+1)+3k=0解这方程,得解这方程,得 k= - 2由根与系数的关系,得由根与系数的关系,得2 x23k即即2 x26 x2 3答:方程的另一个根是答:方程的另一个根是3 , k的值是的值是2.1、已知方程、已知方程3x219x+m=0的一个根是的一个根是1,求它的,求它的另一个根及另一个根及m的值。的值。2、设、设x1,x2是方程是方程2x24x3=0的两个根,求的两个根,求(x1+1)(x2+1)的值的值.解:设方程的另一个根为解:设方程的另一个根为x2,319则x2+1= , x2= ,316又x21= ,3m m= 3x2 = 16 解:解:由根与系数的关系由
8、根与系数的关系,得得x1+x2= - 2 , x1 x2=23 (x1+1)(x2+1) =2325x1 x2 + (x1+x2)+1 =-2+( )+1=以方程以方程X X2 2+3X-5=0+3X-5=0的两个根的相反数为根的方程的两个根的相反数为根的方程是(是( )A、y y2 23y-5=0 B3y-5=0 B、 y y2 23y-5=0 3y-5=0 C、y y2 23y3y5=0 D5=0 D、 y y2 23y3y5=05=0B分析分析:设原方程两根为设原方程两根为 则则:21,xx5, 32121xxxx新方程的两根之和为新方程的两根之和为3)()(21xx新方程的两根之积为新方程的两根之积为5)()(21xx以以 为两根的一元二次方程为两根的一元二次方程(二次项系数为二次项系数为1)为为:0)(21212xxxxxx2,1xx二、已知两根求作新的方程二、已知两根求作新的方程2、熟练
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国可重复使用防护面罩行业市场全景分析及前景机遇研判报告
- 四川省广安市2025年中考英语真题附答案
- 看谁算得巧(教学设计)-2024-2025学年四年级下册数学沪教版
- 2025年中国可降解PLA吸管行业市场全景分析及前景机遇研判报告
- 中国防护文胸行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 展柜设计培训课件
- 2025年中国钩螺栓行业市场发展前景及发展趋势与投资战略研究报告
- 中国深红硫锑银矿行业调查建议报告
- 2025年 浙江省考行测考试试题附答案
- 中国数模转换器行业市场全景监测及投资前景展望报告
- 七年级数学新北师大版(2024)下册第一章《整式的乘除》单元检测习题(含简单答案)
- 固定动火区管理规定、通知及审批表
- 《课件铁路发展史》课件
- 2025年贵州茅台酒厂集团招聘笔试参考题库含答案解析
- 消渴中医护理查房
- 儿童护照办理委托书
- 《中药调剂技术》课件-中药调剂的概念、起源与发展
- 《数据中心节能方法》课件
- 循环系统疾病智慧树知到答案2024年哈尔滨医科大学附属第一医院
- 2024-2030年中国激光水平仪行业市场发展趋势与前景展望战略分析报告
- 部编本小学语文六年级下册毕业总复习教案
评论
0/150
提交评论